
Documents/Development/finPOWER Connect/Version 3/Smart Lists/finPOWER Connect 3 

Smart Lists.docx 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

finPOWER Connect 3 
Smart Lists 

 

 

Version 3.05 

16th March 2021 



Page 2 of 37 

Table of Contents 
 

Disclaimer.................................................................................................................... 3 

Version History ............................................................................................................. 4 

Introduction ................................................................................................................. 5 

Samples ................................................................................................................... 5 

Security .................................................................................................................... 5 

Smart Lists Overview .................................................................................................... 6 

Tutorial ....................................................................................................................... 7 

Adding a new "Smart List" Script ................................................................................. 7 

finSmartListHandler ................................................................................................. 8 

Returning a List of Clients ........................................................................................... 9 

Customising Columns ............................................................................................... 11 

Showing a Row Summary ......................................................................................... 14 

Making the Row Summary Optional ............................................................................ 16 

Allow Filtering by City ............................................................................................... 18 

Adding a "Send Email" Action .................................................................................... 22 

Adding a "Request Address Update" Action .................................................................. 24 

File Uploads ............................................................................................................... 29 

Notification Actions ..................................................................................................... 31 

Targeting a Specific User and Date As At ....................................................................... 32 

User ....................................................................................................................... 32 

Date As At .............................................................................................................. 33 

Row Actions ............................................................................................................... 34 

Form Open .............................................................................................................. 34 

Forms with an id Parameter .................................................................................... 34 

Forms without an id Parameter ............................................................................... 34 

Quick Lists ................................................................................................................. 35 

Custom Quick Lists ................................................................................................... 36 

Handling Multiple Lists ........................................................................................... 36 



Page 3 of 37 

Disclaimer 
This document contains information that may be subject to change at any stage. 

All code examples are provided "as is". 

This document may reference future functionality not currently available in the release version 

of finPOWER Connect. 

Copyright Intersoft Systems Ltd, 2021. 

 



Page 4 of 37 

Version History 
Date Version Name Changes 

17/01/2017 3.00 PH Created. 

19/02/2018 3.01 PH Updated to detail new "UserId" property of Smart List Handler. 

18/05/2018 3.02 PH Updated to document Row Actions. 

22/01/2020 3.03 PH Quick Lists. 

26/02/2020 3.04 PH Date As At support for Smart List Handler. 

15/03/2021 3.05 PH Couple or errors corrected and some parts clarified. 

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

 



Page 5 of 37 

Introduction 
This document discusses finPOWER Connect Smart Lists and is focused on the creation and 
configuration of Smart Lists. 

NOTE: The majority of this document is a tutorial detailing how to create a new Smart List.  

Samples 
Several Smart List samples are available. These are included within the finPOWER Connect 
setup and are stored in the [ApplicationFolder]/Templates/SampleScripts folder. 

Also, system-supplied Smart Lists can be imported via the Scripts form, Import Special, Smart 
List action: 

 

Security 
When querying the finPOWER Connect database, always ensure that your SQL WHERE clause 
contains any filters relevant to the current User, e.g.: 
 
  sqb.sqlWhere.Append(finBL.CurrentUserInformation.FilterClientSqlWhere) 

 

Variations on this exist for Accounts, Account Applications and Security Statements. 

NOTE: Smart Lists displayed in the Tasks View in finPOWER Connect Cloud can be written to 
cater for viewing of another User's records. 

See the section Targeting a Specific User for a code example. 



Page 6 of 37 

Smart Lists Overview 
• Smart Lists allow custom Lists (plus corresponding record previews and actions) to be 

created in finPOWER Connect. 

o These can be used in finPOWER Connect Cloud and will, in the future, be supported 
within the desktop version of finPOWER Connect. 

• Smart Lists rely heavily on Scripting. 

o Smart List Scripts have access to the full finPOWER Connect business layer functionality. 

• Smart Lists are used in the finPOWER Connect Cloud "Tasks View". They provide Task 
Manager like functionality that is better suited to a Web-based environment, e.g.: 
 

 



Page 7 of 37 

Tutorial 
This tutorial goes through the creation and gradual enhancement of a Smart List which 
displays finPOWER Connect Clients. 

It is split into the following steps: 

• Adding a new "Smart List" Script 

• Returning a List of Clients 

• Customising Columns 

• Showing a Row Summary 

• Making the Row Summary Optional 

• Allow Filtering by City 

• Adding a "Send Email" Action 

• Adding a "Request Address Update" Action 

Adding a new "Smart List" Script 
In this section we will create a new "Smart List" Script and add the basic template code. 

• From the Admin menu, select Scripts to open the Scripts form. 

• Click the "Add" button to create a new Script and set the various properties as shown 
below: 
 

 
 

• Select the "Script Code" page and use the "Paste template Script code" button ( ) to 
provide a starting point for the Smart List Script. 

• Save the Script. 

 

The Script now contains the following code: 

Option Explicit On 

Option Strict On 

 

' Objects 

Private mEventArgs As ISKeyValueList 

Private mSmartListHandler As finSmartListHandler 

 



Page 8 of 37 

Public Function Main(smartListHandler As finSmartListHandler, 

                     eventId As String, 

                     eventArgs As ISKeyValueList, 

                     hostingContext As isefinSmartListHostingContext, 

                     scriptRequestInfo As finScriptRequestInfo) As Boolean 

 

  ' Assume Success 

  Main = True 

 

  ' Initialise 

  mEventArgs = eventArgs 

  mSmartListHandler = smartListHandler 

 

  ' Handle Events 

  Select Case eventId 

    Case "Initialise" 

      ' Initialise 

      Main = Initialise() 

 

    Case "Execute" 

      ' Execute 

      Main = Execute() 

 

    Case "GetRowSummary" 

      ' Get Row Summary 

      GetRowSummary() 

 

    Case "ExecuteRowAction" 

      ' Execute Row Action 

      Main = ExecuteRowAction() 

 

  End Select 

 

End Function 

 

Private Function Execute() As Boolean 

End Function 

 

Private Function Initialise() As Boolean 

 

  Return True 

 

End Function 

 

Private Sub GetRowSummary() 

End Sub 

 

Private Function ExecuteRowAction() As Boolean 

End Function 

 

The remainder of this tutorial involves implementing and enhancing the various highlighted 
functions called by the Main() method. 

finSmartListHandler 

The most important parameter passed to the Script is smartListHandler. 

This is a finSmartListHandler object that has been initialised from the Script and is the main 

object that the Script will use to communicate with the smart list, e.g., return a Data Table or 
get a Row Summary (e.g., an HTML Summary Page for a Client). 

  



Page 9 of 37 

Returning a List of Clients 
In this section, we will update the Script to retrieve a list of Clients. 

By the end of this section, the Smart List will look like this when viewed in finPOWER Connect 
Cloud: 

 

 

Copy the following code and replace the Execute() method. 

Private Function Execute() As Boolean 

 

  Dim dt As DataTable 

  Dim sqb As ISSelectQueryBuilder 

  Dim Success As Boolean 

 

  ' Assume Success 

  Success = True 

 

  ' Initialise 

  sqb = finBL.Database.CreateSelectQueryBuilder() 

 

  ' Create Query 

  With sqb 

    .Table = "Client" 

    .Fields.AddList("ClientId,Name,DateOfBirth") 

 

    ' SQL Where 

    With .SqlWhere 

      ' User Filters 

      .Append(finBL.CurrentUserInformation.FilterClientSqlWhere) 

    End With 

  End With 

 

  ' Execute 

  Success = sqb.ExecuteDataTable(dt) 

 

  ' Set Smart List Results 

  If Success Then 

    mSmartListHandler.Results.DataSetFromDataTable(dt) 

  End If 

 

  Return Success 

 

End Function 

 

When run from the Scripts form, the following will be displayed: 



Page 10 of 37 

 
 

And, when used as a Task Group Item in finPOWER Connect Cloud: 

 

 

NOTE: In both interfaces, the Client Id column provides a hyperlink to display the Client form. 

This is built-in functionality for recognised field names such as ClientId, AccountId etc. 

 

The code does the following: 

• Creates a Select Query Builder to get a list of all Clients. 

• Executes the query and returns a DataTable. 

• Sets Smart List Handler Results to this DataTable. 

 

IMPORTANT: The highlighted code applies the current User's filters to the Client List; always 
include User Filters. 

  



Page 11 of 37 

Customising Columns 
As it stands, the Smart List displays all Clients and always shows the Client Id, Name and Date 
of Birth (in that order). It also displays the Client Status as a number which is not ideal. 

By the end of this section, the Smart List will look like this when viewed in finPOWER Connect 
Cloud: 

 

 

You can allow the User to choose which columns to display (and in which order) and also 
control column captions and formatting by using the Initialise() method to define the 

Smart List columns. 

Copy the following code and replace the Initialise() method. 

Private Function Initialise() As Boolean 

 

  Dim Success As Boolean 

 

  ' Assume Success 

  Success = True 

 

  ' Define Columns 

  With mSmartListHandler.Columns 

    .AddClientStatus("Status") 

    .AddCode("ClientId", "Code",,,"Clients") 

    .AddString("Name", "Name") 

    .AddDate("DateOfBirth", "DOB") 

  End With 

 

  Return Success 

 

End Function 

 

In finPOWER Connect Cloud, the Smart List now appears as: 
 



Page 12 of 37 

 

 

Note the following: 

• The columns now appear in the order that the Smart List Handler Columns are defined 
rather than the order they are retrieved in the Select Query. 

• A special AddClientStatus() method indicates to the User Interface that the Client Status 

should be displayed as an icon rather a number. 

• The "Date of Birth" column has a custom caption of "DOB". 

 
And, when configuring the Task Group Item, columns can now be selected: 

 

 



Page 13 of 37 

 

 

  



Page 14 of 37 

Showing a Row Summary 
Currently, the Smart List shows a simple grid of Clients. In this section we will add a Client 
summary for the selected row. 

By the end of this section, the Smart List will look like this when viewed in finPOWER Connect 
Cloud: 

 

 

We can easily use the built-in Client Summary page to provide a summary of the selected row. 

Update the Execute() method to include the Pk column in the Select Query: 

  ' Create Query 

  With sqb 

    .Table = "Client" 

    .Fields.AddList("Pk,ClientId,Name,DateOfBirth,Status") 

 

Update the Initialise() method to always return the Pk column and also indicate that this 

Smart List now supports displaying a row summary: 

  ' Define Columns 

  With mSmartListHandler.Columns 

    .AddClientStatus("Status") 

    .AddCode("ClientId", "Code",,,"Clients") 

    .AddString("Name", "Name") 

    .AddDate("DateOfBirth", "DOB") 

     

    ' Hidden (will always be included in results) 

    .AddHidden("Pk") 

  End With 

 

  ' Summary Support 

  mSmartListHandler.SupportsSummary = True 

  mSmartListHandler.SummaryColumns = "Pk" 

 

  Return Success 

 

Copy the following code and replace the GetRowSummary() method. 

Private Sub GetRowSummary() 

 

  Dim Pk As Integer 

  Dim SummaryColumns As ISKeyValueList 

 

  ' Get Event Args 

  SummaryColumns = mEventArgs.GetKeyValueList("SummaryColumns") 

 

  ' Get Summary Column Values that uniquely identify a record 

  Pk = SummaryColumns.GetInteger("Pk") 

 



Page 15 of 37 

  ' Get HTML 

  mSmartListHandler.RowSummary = finBL.SummaryPageFunctions.ClientSummary(False, Pk, Nothing, 

ScriptInfo.Target) 

 

End Sub 

 

In finPOWER Connect Cloud, the Smart List now appears as: 
 

 

 

Note the following: 

• We need to uniquely identify each row, therefore we always include the Pk column. 

o But this is meaningless to Users so we add it as a hidden column. 

o We could have used the ClientId column instead. 

• In the Initialise() method, setting mSmartListHandler.SummaryColumns = "Pk" 

instructs the Smart List to always send the Pk fields value to the Script when requesting a 
Row Summary. 

o If we needed multiple fields, we can comma-separate them, e.g. "Pk,ClientId" 

• The GetRowSummary() method is passed a special "SummaryColumns" parameter. 

o This allows us to determine the Pk of the row to summarise and pass this to the built-in 

SummaryPageFunctions.ClientSummary() method. 

 

  



Page 16 of 37 

Making the Row Summary Optional 
Currently, the row summary is always displayed. 

In this section we'll see how to make this optional, i.e., the Smart List can be configured to 
show or hide the summary when configuring a Task Group Item: 

 

 

Script Parameters are used to define options such as this. 

• Select the Parameters page on the Scripts form 

• Set "Type" to custom and add a "Section Start" and a "Boolean" Parameter as shown below: 
 

 
 

Now, when configuring a Task Group Item, these new Parameters will be displayed as shown 
at the start of this section. 

Update the Execute() method to use this new Parameter: 

Dim dt As DataTable 

Dim Parameters As ISKeyValueList   

Dim sqb As ISSelectQueryBuilder 

Dim Success As Boolean 

 

' Assume Success 

Success = True 

 

' Initialise 

Parameters = mSmartListHandler.ExecutionParameters   

sqb = finBL.Database.CreateSelectQueryBuilder() 

 

' Create Query 

With sqb 

  .Table = "Client" 

  .Fields.AddList("Pk,ClientId,Name,DateOfBirth,Status") 

 



Page 17 of 37 

  ' SQL Where 

  With .SqlWhere 

    ' User Filters 

    .Append(finBL.CurrentUserInformation.FilterClientSqlWhere) 

  End With 

End With 

 

' Execute 

Success = sqb.ExecuteDataTable(dt) 

 

' Set Smart List Results 

If Success Then 

  mSmartListHandler.Results.DataSetFromDataTable(dt) 

End If 

 

' Displaying a Summary? 

mSmartListHandler.SupportsSummary = Parameters.GetBoolean("ShowSummary") 

 

Return Success 

 

  



Page 18 of 37 

Allow Filtering by City 
Parameters can also be used to add functionality such as filtering the list by City (either by 
displaying a field for the User to enter or by configuring a Task Group Item): 

 

 

Again, Script Parameters are used to add functionality such as this. 

• Add 2 new Parameters as shown below: 
 

 
 

Update the Execute() method to use the new "CitiesRange" Parameter: 

Dim CitiesRange As String   

Dim dt As DataTable 

Dim Parameters As ISKeyValueList   

Dim sqb As ISSelectQueryBuilder 

Dim sqbCities As ISSelectQueryBuilder 

Dim Success As Boolean 

 

' Assume Success 

Success = True 

 

' Initialise 

Parameters = mSmartListHandler.ExecutionParameters 

sqb = finBL.Database.CreateSelectQueryBuilder() 

sqbCities = finBL.Database.CreateSelectQueryBuilder() 

 

' Get Parameters 

With Parameters 

  CitiesRange = .GetString("CitiesRange") 

End With 

 

' Create Query 

With sqb 

  .Table = "Client" 

  .Fields.AddList("Pk,ClientId,Name,DateOfBirth,Status") 

 

  ' SQL Where 

  With .SqlWhere 

    If Len(CitiesRange) = 0 Then 

      ' Return no records if not filtered 

      .AppendComparisonInteger("Pk", "=", -1) 

    Else 

      ' Cities (include Suburb) 

      With sqbCities 

        .Table = "ClientContactAddress" 



Page 19 of 37 

        .Fields.Add("ClientPk") 

         

        With .SqlWhere 

          .AppendComparisonField("ClientContactAddress.ClientPk", "=", "Client.Pk") 

           

          ' City/ Suburb 

          .BlockBegin(iseSqlWhereBuilderNestedBlockType.OrBlock) 

          .AppendRange("City", CitiesRange) 

          .AppendRange("Suburb", CitiesRange) 

          .BlockEnd() 

 

          ' Current Addresses Only 

          .AppendComparisonIntegerBoolean("Historic", "=", False) 

          .BlockBegin(iseSqlWhereBuilderNestedBlockType.OrBlock) 

          .AppendComparisonNull("DateStop") 

          .AppendComparisonDate("DateStop", "<", 

finBL.TimeZoneFunctions.GetCurrentDatabaseDate().AddDays(1), False) 

          .BlockEnd() 

        End With 

      End With 

       

      .AppendInSubQuery("Pk", sqbCities) 

    End If 

     

    ' User Filters 

    .Append(finBL.CurrentUserInformation.FilterClientSqlWhere) 

  End With 

   

  ' Order By 

  .OrderByFields.Add("ClientId") 

End With 

 

' Execute 

Success = sqb.ExecuteDataTable(dt) 

 

' Set Smart List Results 

If Success Then 

  mSmartListHandler.Results.DataSetFromDataTable(dt) 

End If 

 

' Displaying a Summary? 

mSmartListHandler.SupportsSummary = Parameters.GetBoolean("ShowSummary") 

 

Return Success 

 

Note the following: 

• The "CitiesRange" Parameter is used to build a sub-query to restrict returned records. 

o If this Parameter is blank, an empty Data Table is returned. 

• The Select Query has also been updated so that the results are now ordered by ClientId. 

 

When configuring a Task Group Item to use this Smart List, by default you can enter the Cities 
Parameter on a per-item basis, i.e., not allow the Client to enter it. This allows you to produce 
custom lists, e.g.: 

 



Page 20 of 37 

 

 

To allow the Client to enter a City (as per the screenshot at the start of this section), you need 
to do the following: 

• From the finPOWER Connect Cloud Configuration form, Tasks group, Task Groups page, edit 
the Smart List item: 

o You can either drilldown the Task Group to locate the item or click the link in the 

summary in the "Task Group Items" section. 

• Move to the "User Customisation" page of the finPOWER Connect Cloud Task Group Item 
wizard: 
 

 
 

• Check the "Allow Users to customise Parameters?" box. 

• Click the "Add Standard Parameters" button ( ) to add all Parameters defined on the 
Smart List Script: 

 



Page 21 of 37 

 
 

• Remove all Parameters except "CitiesRange" since this is the only one you want to allow 
Users to enter. 
 

The Smart List will now allow the User to filter by City (or a range of Cities): 
 

 

 

  



Page 22 of 37 

Adding a "Send Email" Action 
Actions can be added below the results grid, e.g., to send a Client an Email: 

 

 

When clicked, this Action will open the "Send Email Message" wizard for the Client, allowing 
the User to easily enter and send an Email: 

 

 

Firstly, all Forms are opened using the record's Id (e.g., C10000) and NOT the Integer primary 
key. Therefore, we need to update the Initialise() method to always include the ClientId 

column, regardless of whether it is being displayed or not: 

  ' Define Columns 

  With mSmartListHandler.Columns 

    .AddClientStatus("Status") 

    .AddCode("ClientId", "Code",,,"Clients").AlwaysInclude = True 

    .AddString("Name", "Name") 

    .AddDate("DateOfBirth", "DOB") 

 

    ' Hidden (will always be included in results) 

    .AddHidden("Pk") 

  End With 

 



Page 23 of 37 

Next, we need to define an Action that will open the Send Email Message wizard so add the 
following to the bottom of the Initialise() method: 

  ' Summary Support 

  mSmartListHandler.SupportsSummary = True 

  mSmartListHandler.SummaryColumns = "Pk" 

 

  ' Define Actions 

  With mSmartListHandler.Actions 

    .AddRowFormOpen("SendEmail", "EmailMessage", "ClientId", "type=Client&subject=Test Email from 

Smart List", "Email", "", "Open the Send Email Message wizard") 

  End With 

 

  Return Success 

 

Note the following: 

• The finSmartListHandler.Actions.AddRowFormOpen() method takes the following 

parameters: 

o actionId 

o formKey 

 The Form Key that identifies the Send Email Message wizard. 

 This can be seen as part of the URL, e.g., when showing the Send Email Message 
wizard from an action on the Client form, the URL is as follows: 
 
/finC/?V?id=Records/Main_Tasks?page=TASKS&item=Test2/Records?list=Client.C10000&sel=&sbs=n&

p=/EmailMessage?type=Client&id=C10000 

o id 

 The field name of the record id. 

o parametersUrl 

 Any other URL-encoded Parameters to send to the form being opened. 

o icon 

 The Icon for the Action button. 

o caption 

 The Caption text for the Action button. In this case, we have left it blank so only the 
icon shows. 

o description 

 Appears as a Tooltip on the Action button. 

 

NOTE: Because this Action simply opens a form (the Send Email Message wizard) in the User 

Interface, there is nothing else we need to add to the Script.  

 

  



Page 24 of 37 

Adding a "Request Address Update" Action 
The previous Action simply opened the Send Email Message wizard in the User Interface. 

We will now add an Action that is processed by the Smart List Script and will send an Email 
automatically to the Client to confirm their existing address information: 

 

 

When clicked, this Action will automatically send an Email to the selected Client (or Clients) 
detailing their currently recorded address. 

 

Firstly, we need to define a custom Action so add the following to the Initialise() method: 

  ' Summary Support 

  mSmartListHandler.SupportsSummary = True 

  mSmartListHandler.SummaryColumns = "Pk" 

 

  ' Define Actions 

  With mSmartListHandler.Actions 

    .AddRowFormOpen("SendEmail", "EmailMessage", "ClientId", "type=Client&subject=Test Email from 

Smart List", "Email", "", "Open the Send Email Message wizard") 

    .AddRowCustom("RequestAddressUpdate", True, True, True, "", "Email", "Confirm Address", "Send 

an Email for Client to confirm their Address details") 

  End With 

 

  Return Success 

 

Note the following: 

• The finSmartListHandler.Actions.AddRowCustom() method takes the following 

parameters: 

o actionId 

o allowMultiple 

 Indicates whether this action will be available if multiple rows are selected. In this 
case we have set to True. 

o prompt 

 This is set to True so the User will be prompted before the action is executed. Even if 
only a single row is selected.  

o promptIfMultiple 

 This is also set to True. 



Page 25 of 37 

 NOTE: This is separate from the 'prompt' parameter since it may be desirable to NOT 
prompt unless multiple rows are selected. 

o parametersUrl 

o icon 

o caption 

o description 

 

Now, if several grid rows are selected and this Action is clicked, a prompt will be displayed: 

 

 

Upon clicking "OK", each of the grid rows will display an error icon with a tooltip detailing the 
error: 

 

 

This is because we are not handling the new Action in the Script. 

Replace the ExecuteRowAction() method with the following: 

Private Function ExecuteRowAction() As Boolean 

 

  Dim Action As finSmartListAction 

  Dim ActionId As String 

  Dim Parameters As ISKeyValueList 

  Dim Success As Boolean 

  Dim SummaryColumns As ISKeyValueList 

  Dim Pk As Integer 

 

  ' Assume Success 

  Success = True 

 

  ' Get Event Args 

  With mEventArgs 

    ActionId = .GetString("ActionId") 

    Parameters = .GetKeyValueList("Parameters") 

    SummaryColumns = mEventArgs.GetKeyValueList("SummaryColumns") 

  End With 

 

  ' Get Summary Column Values that uniquely identify a record 

  Pk = SummaryColumns.GetInteger("Pk") 

 

  ' Get Action 

  If mSmartListHandler.Actions.Exists(ActionId) Then 

    Action = mSmartListHandler.Actions(ActionId) 



Page 26 of 37 

  Else 

    Success = False 

    finBL.Error.ErrorBeginFormat("Action '{0}' not found.", ActionId) 

  End If 

 

  ' Execute Action 

  If Success Then 

    Select Case Action.ActionId 

      Case "RequestAddressUpdate" 

        Success = ExecuteRowAction_RequestAddressUpdate(Pk) 

 

      Case Else 

        Success = False 

        finBL.Error.ErrorBeginFormat("Action '{0}' not handled.", Action.ActionId) 

    End Select 

  End If 

 

  Return Success 

 

End Function 

 

And, add the following function to the bottom of the Script: 

Private Function ExecuteRowAction_RequestAddressUpdate(clientPk As Integer) As Boolean 

 

  Dim Client As finClient 

  Dim CurrentAddress As ISAddressDetails 

  Dim EmailAddress As String 

  Dim Message As String 

  Dim Recipients As finMessageRecipients 

  Dim sb As StringBuilder  

  Dim Subject As String 

  Dim Success As Boolean 

 

  ' Assume Success 

  Success = True 

   

  ' Load Client 

  Client = finBL.CreateClient() 

  Success = Client.LoadPk(clientPk) 

   

  ' Locate current Email 

  If Success Then 

    EmailAddress = Client.ContactMethods.GetCurrentEmail().Value 

     

    ' Validate 

    If Len(EmailAddress) = 0 Then 

      Success = False 

      finBL.Error.ErrorBegin("Client does not have a current Email address.") 

    End If 

  End If 

   

  ' Locate current Physical Address 

  If Success Then 

    CurrentAddress = Client.ContactAddresses.GetCurrentPostalAddress() 

  End If 

   

  ' Build Email message 

  If Success Then 

    Subject = "Address Confirmation" 

     

    sb = New StringBuilder() 

    With sb 

      .AppendLine(String.Format("Dear {0}", Client.SalutationResolved)) 

      .AppendLine() 

      If CurrentAddress.HasValue Then 

        .AppendLine("We have the following postal address recorded for you:") 

        .AppendLine() 

        .AppendLine(finBL.Addressing.FormatAddressFromAddressDetails(CurrentAddress)) 

        .AppendLine() 

        .AppendLine("If your address has changed, please could you email your new address details 

so we can update our records.") 

      Else 

        .AppendLine("We do not have a current postal address recorded for you.") 

        .AppendLine("Please could you email your address details so we can update our records.") 

      End If 

       

      .AppendLine() 

      .AppendLine("Regards,") 



Page 27 of 37 

      .AppendLine() 

      .AppendLine(finBL.CurrentUserInformation.UserName) 

    End With 

     

    Message = sb.ToString() 

  End If 

   

  ' Send Email 

  ' NOTE: This also generates a Client Log 

  If Success Then 

    Recipients = finBL.CreateMessageRecipients() 

    With Recipients 

      ' Initialise 

      .AddClient(Client.ClientId, Client.Name, EmailAddress) 

      .GenerateMessages(Message, finBL.TimeZoneFunctions.GetCurrentDatabaseDate(), Subject) 

       

      ' Send (append signature and use standard HTML Email template) 

      Success = .SendEmail(iseMessageTarget.Send, Nothing, True, "", "*", "*") 

    End With 

  End If 

   

  Return Success 

   

End Function 

 

Now, running this Action sends an Email and produces the following (providing the Client has 
been give an Email address and the SMTP Server details in finPOWER Connect are configured 
correctly): 

 

 

The problem now is that the row for which the Email has been sent has been flagged as 
"expired", hence the cross-hatching and the fact no more Actions can be performed on it 
without refreshing the Smart List. 

"Expiring" a row is the default when running an Action since it is assumed that the Action is 
updating the record, e.g., setting the Flag Colour of a Workflow. 

However, in this case, the record is not being affected; the Action is simply sending an Email. 

Adding the following to the end of the ExecuteRowAction_RequestAddressUpdate() method 

solves this issue: 

 

  ' Do not expire row 

  mSmartListHandler.ResultsRowAction.Expired = False 

   

  Return Success 



Page 28 of 37 

   

End Function 

 

 



Page 29 of 37 

File Uploads 
Uploading Files is also possible via Smart Lists actions. 

For example, your Smart List may list un-actioned Account Logs that require a scanned 
document to be attached. 

In this case, you may wish to provide an "Upload File" Action for the selected Row. 

The following partial example demonstrates how to achieve this: 

Private Function Initialise() As Boolean 

 

  Dim Success As Boolean 

 

  ' Assume Success 

  Success = True 

 

  ' Define Columns 

  With mSmartListHandler.Columns 

    ' Hidden (always included in results, e.g., for drilldowns and summaries) 

    .AddHidden("Pk") 

  End With 

 

  ' Define Actions 

  With mSmartListHandler.Actions 

    .AddRowCustomFileUpload("UploadFile") 

  End With 

 

  ' Summary Support 

  ' NOTE: Summary Columns also provide the primary key for row-based Actions 

  mSmartListHandler.SupportsSummary = True 

  mSmartListHandler.SummaryColumns = "Pk" 

 

  Return Success 

 

End Function 

 

Private Function ExecuteRowAction() As Boolean 

 

  Dim AccountLog As finAccountLog 

  Dim Action As finSmartListAction 

  Dim ActionId As String 

  Dim Parameters As ISKeyValueList 

  Dim Pk As Integer 

  Dim Success As Boolean 

  Dim SummaryColumns As ISKeyValueList 

 

  ' Assume Success 

  Success = True 

 

  ' Get Event Args 

  With mEventArgs 

    ActionId = .GetString("ActionId") 

    Parameters = .GetKeyValueList("Parameters") 

    SummaryColumns = mEventArgs.GetKeyValueList("SummaryColumns") 

  End With 

 

  ' Get Summary Column Values that uniquely identify a record 

  Pk = SummaryColumns.GetInteger("Pk") 

 

  ' Get Action 

  If mSmartListHandler.Actions.Exists(ActionId) Then 

    Action = mSmartListHandler.Actions(ActionId) 

  Else 

    Success = False 

    finBL.Error.ErrorBeginFormat("Action '{0}' not found.", ActionId) 

  End If 

 

  ' Load Log 

  If Success Then 

    AccountLog = finBL.CreateAccountLog() 

    Success = AccountLog.Load(Pk) 

  End If 

 

  ' Execute Action 

  If Success Then 

    Select Case Action.ActionType 

      Case isefinSmartListActionType.RowCustom 

        ' Custom 



Page 30 of 37 

        Select Case Action.ActionId 

          Case "UploadFile" 

            ' Upload File 

            Success = ExecuteRowAction_UploadFile(AccountLog) 

 

          Case Else 

            Success = False 

            finBL.Error.ErrorBeginFormat("Action '{0}' not handled.", Action.ActionId) 

        End Select 

 

      Case Else 

        Success = False 

        finBL.Error.ErrorBeginFormat("Action '{0}' not handled.", Action.ActionId) 

    End Select 

  End If 

 

  Return Success 

 

End Function 

 

Private Function ExecuteRowAction_UploadFile(accountLog As finAccountLog) As Boolean 

 

  Dim Account As finAccount 

  Dim AddedAsFileName As String 

  Dim Success As Boolean 

 

  ' Assume Success 

  Success = True 

 

  ' Validate 

  If mScriptRequestInfo.Files.Count = 0 Then 

    Success = False 

    finBL.Error.ErrorBegin("No file specified.") 

  End If 

 

  ' Load Account 

  If Success Then 

    Account = finBL.CreateAccount() 

    Success = Account.LoadPk(accountLog.AccountPk) 

  End If 

 

  ' Upload File 

  If Success Then 

    Success = Account.DocumentFiles.Add(mScriptRequestInfo.Files(0).FileData, 

                                        "", 

                                        mScriptRequestInfo.Files(0).FileName, 

                                        AddedAsFileName, 

                                        True) 

  End If 

 

  ' Update Log 

  If Success Then 

    With AccountLog 

      .DocumentFileName = AddedAsFileName 

      .ActionCompleteUtcDate = finBL.TimeZoneFunctions.GetCurrentUtcDateTime() 

 

      Success = .Save() 

    End With 

  End If 

 

  Return Success 

 

End Function 

 

This provides the following Action for a Smart List Row: 

 



Page 31 of 37 

Notification Actions 
When an action is performed on a row, the row is automatically flagged as being "Invalid" or 
"Expired", i.e., the information it is displaying may not be up-to-date. 

Smart Lists can also respond to Notification Actions to invalidate rows, e.g., if a Client Log is 
edited, you may wish for any Smart List rows referencing that Log to become invalid. 

Built-in Smart Lists such as Tasks and Workflows contain examples of how to achieve this. 

 



Page 32 of 37 

Targeting a Specific User and Date As At 

User 
Prior to version 3.00.00 of finPOWER Connect, Smart Lists (as shown in the Tasks view) were 

always intended to deal with the currently logged in User. 

However, an update to finPOWER Connect Cloud allows other Users' Tasks Views to be viewed 
within finPOWER Connect. The available Users that can be viewed is as per the Users page of 
the Task Manager form within finPOWER Connect, e.g.: 

 

The finSmartListHandler object can be initialised with a UserId property that can be used by 

Smart List Scripts to target a specific User. 

This can then be accounted for when querying the database to supply a different SQL Where 

clause based on the User, e.g.: 

 

' Multi-User Support (i.e., Allow Tasks to be viewed for a different User) 

If mSmartListHandler.UserId = finBL.CurrentUserInformation.UserId Then 

  FilterAccountSqlWhere = finBL.CurrentUserInformation.FilterAccountSqlWhere 

Else 

  ' Viewing for another User 

  If finBL.Users(mSmartListHandler.UserId).GetCurrentUserInformation(CurrentUserInformation) Then 

    FilterAccountSqlWhere = CurrentUserInformation.FilterAccountSqlWhere 

  Else 

  ' ERROR 

  End If 

End If 

 

WARNING: The finAccount object will still fail to load if the currently signed in User does not 

have permission to view the Account, regardless of the User that tasks are being shown for. 



Page 33 of 37 

Date As At 
Prior to version 3.03.00 of finPOWER Connect, Smart Lists (as shown in the Tasks view) were 
always intended to deal with the current date (in the Database Time Zone). 

The Tasks view in finPOWER Connect Cloud now allows user's to select the 'Date As At' to use, 
e.g.: 

 

The finSmartListHandler object can be initialised with a DateAsAt property that can be used 

by Smart List Scripts, e.g., when querying the database: 

 

' Date As At Support 

If mSmartListHandler.DateAsAt <> Nothing Then 

  Sqb.SqlWhere.AppendComparisonDate("AccountLog.ActionDate", "<=", mSmartListHandler.DateAsAt) 

End If 

 

 



Page 34 of 37 

Row Actions 

Form Open 

Forms with an id Parameter 

Many forms take an id parameter to represent the record id, e.g., to show the "EmailMessage" 

form for a Client, an action can be added as follows: 

.AddRowFormOpen("SendEmail", 

"EmailMessage", 

"ClientId", 

"type=Client&subject=Test Email from Smart List", 

"Email", 

"", 

"Open the Send Email Message wizard") 

 

This tells the action to pass the content of the "ClientId" field as the id parameter when 

opening the form. 

Forms without an id Parameter 

Many forms, typically HTML Widgets, do not accept an id parameter. 

Instead, the Widget may accept a parameter such as accountId. 

In these cases, a replaceable tag should be used, e.g.: 

.AddRowFormOpen("PendingWithdrawal", 

"AccountPendingWithdrawal", 

"AccountId", 

"accountId=[AccountId]&showHistory=false", 

"Withdrawal", 

"Drawdown", 

"Make a request for an Additional Drawdown") 

 

This tells the action to replace the "[AccountId] tag with the content of the "AccountId" field as 
the id parameter when opening the form. 

 



Page 35 of 37 

Quick Lists 
Quick Lists are a special type of Smart List which are displayed on the "Quick Lists" page of the 
"Search view" in finPOWER Connect Cloud to present filtered lists to the User. 

Under the finPOWER Connect Configuration form, Search group, Quick Lists page, there is the 
option to include various system-defined Quick Lists: 

 

 
 

Checking one of these options means that one or more entries will be included on the Quick 
Lists page, e.g.: 
 

 

 

NOTE: The three entries above are the result of checking the "Accounts" box which uses the 
system supplied SmartList_QuickList_Accounts Smart List. 

This Smart List has a special parameter named "QuickListType". This allows the Script to 
handle multiple Quick Lists. 

 
Quick Lists will only display a single Parameter named "MyRecords" (if the list defines this), 
e.g.: 

 

 

  



Page 36 of 37 

Custom Quick Lists 
Smart List Scripts can be configured to be used as Quick Lists by selecting the "Show in Menu" 
option on the Options page of the Scripts form: 
 

 
 

The Script's Category as defined on the General page of the Scripts form determines how 
Quick Lists are grouped. 

Handling Multiple Lists 

Each of the system-supplied Quick Lists can handle multiple lists. 

They do this by providing a special parameter named "QuickListType". This parameter is never 
shown to the User, e.g.: 
 

 

 

They also defined a special parameter named "Configuration" which is a tilde-separated list of 
entries for each option that the User will see. This is in the format: 

Icon~Caption~QuickListType 

 

For example, the system supplied Accounts Quick List defines the following configuration 
options: 



Page 37 of 37 

 

 

NOTE: The icon "Account|Add" indicates that the "Account" icon should be shown with the 

"Add" overlay (a green plus symbol). 


