
Documents/Development/finPOWER Connect/Version 3/Portals/finPOWER Connect 3 

Portals.docx 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

finPOWER Connect 3 
Portals 

 
 

Version 1.21 

16th June 2021 



Page 2 of 74 

Table of Contents 
 

Disclaimer ...................................................................................................................... 6 

Version History ................................................................................................................ 7 

Introduction .................................................................................................................... 8 

External Hosting Considerations ..................................................................................... 8 

Resources .................................................................................................................... 8 

Cookies ....................................................................................................................... 8 

Overview ...................................................................................................................... 10 

Portals Form ................................................................................................................. 11 

General ..................................................................................................................... 11 

Security ..................................................................................................................... 13 

Client-Specific ......................................................................................................... 14 

User-Specific ........................................................................................................... 15 

Multi-Factor ............................................................................................................... 16 

PWA .......................................................................................................................... 17 

Options ..................................................................................................................... 18 

Theme ....................................................................................................................... 19 

HTML Widgets ............................................................................................................ 21 

Master Page ............................................................................................................... 22 

Script Code ................................................................................................................ 22 

Pages ........................................................................................................................ 23 

Resources .................................................................................................................. 24 

Constants .................................................................................................................. 24 

State ......................................................................................................................... 24 

Test .......................................................................................................................... 24 

Publish ...................................................................................................................... 24 

IDE ........................................................................................................................... 25 

History ................................................................................................................... 26 

Manually Adding History Entries .............................................................................. 28 

Purging History Entries .......................................................................................... 28 

Authentication and Security ............................................................................................ 29 

Authentication Method ................................................................................................. 29 

User ....................................................................................................................... 29 

Client ..................................................................................................................... 30 

Unauthenticated ...................................................................................................... 30 

Session Timeout and Secret Key ................................................................................... 31 

Session Timeout minutes .......................................................................................... 31 

Secret Key .............................................................................................................. 31 

Additional Authentication Checks .................................................................................. 32 

Portal ..................................................................................................................... 32 

Page....................................................................................................................... 32 

Custom Login Form ..................................................................................................... 34 



Page 3 of 74 

Simple Style Changes ............................................................................................... 34 

Custom Page ........................................................................................................... 35 

Custom Error Pages .................................................................................................... 37 

401 (Unauthorised) .................................................................................................. 37 

404 (Not Found) ...................................................................................................... 37 

Navigation and Hyperlinks .............................................................................................. 38 

portal.Navigate ........................................................................................................... 38 

portal.Navigate2 ......................................................................................................... 38 

portal.Open ................................................................................................................ 38 

Anchor Tags "href" Attribute ........................................................................................ 38 

portal.OpenPageInModal .............................................................................................. 38 

portal.ShowPasswordChange ........................................................................................ 39 

Master Page .................................................................................................................. 40 

Content blocks ........................................................................................................... 41 

Literals ...................................................................................................................... 42 

Constants .................................................................................................................. 43 

User Data .................................................................................................................. 44 

SiteMap ..................................................................................................................... 45 

Resources .................................................................................................................. 46 

Replaceable [THEME] Tag ......................................................................................... 46 

Resource Bundles ....................................................................................................... 47 

Tags ......................................................................................................................... 48 

Overriding Tags ....................................................................................................... 48 

Theme ....................................................................................................................... 50 

Widget ...................................................................................................................... 51 

Styling .................................................................................................................... 51 

Security .................................................................................................................. 51 

Portal Pages .................................................................................................................. 52 

Content blocks ........................................................................................................... 52 

Site Map .................................................................................................................... 52 

Partial Pages ................................................................................................................. 54 

Partial Page Guidelines ................................................................................................ 54 

HTML Elements ........................................................................................................ 54 

JavaScript ............................................................................................................... 54 

Inline CSS and LESS ................................................................................................ 55 

Constants ............................................................................................................... 56 

Multi-Use Partial Pages and Avoiding Element ID Conflicts ............................................... 56 

Script Callbacks .......................................................................................................... 57 

Special Page Codes ........................................................................................................ 58 

ERROR_401 .......................................................................................................... 58 

ERROR_404 .......................................................................................................... 58 

LANDING ............................................................................................................. 58 

LOGIN ................................................................................................................. 58 



Page 4 of 74 

PASSWORD_CHANGE ............................................................................................ 58 

PORTAL_CONFIG ................................................................................................... 58 

TERMS ................................................................................................................. 58 

Resources ..................................................................................................................... 59 

Special Resources ....................................................................................................... 59 

favicon ................................................................................................................... 59 

PASSWORD_RESET_EMAIL ........................................................................................ 59 

portalPreview .......................................................................................................... 59 

Securing Resources ..................................................................................................... 59 

High DPI Resources ..................................................................................................... 60 

Resource Types .......................................................................................................... 61 

HTML ...................................................................................................................... 61 

Images ................................................................................................................... 61 

Documents .............................................................................................................. 61 

StyleSheet (CSS) ..................................................................................................... 61 

StyleSheet (Less) ..................................................................................................... 61 

JavaScript ............................................................................................................... 61 

Script Function Library .............................................................................................. 61 

Text ....................................................................................................................... 62 

State Data .................................................................................................................... 63 

Application ................................................................................................................. 63 

Session ..................................................................................................................... 64 

User Data .................................................................................................................. 65 

JavaScript objects ......................................................................................................... 66 

page ......................................................................................................................... 66 

portal ........................................................................................................................ 66 

Launching a Portal ......................................................................................................... 68 

From within finPOWER Connect .................................................................................... 68 

From Web Services Administration ................................................................................ 68 

In a Web Browser ....................................................................................................... 68 

Via Web Services ..................................................................................................... 68 

Via Web Services in an IFRAME .................................................................................. 68 

Portal Hosting ............................................................................................................... 70 

Directly ..................................................................................................................... 70 

Directly but in an IFRAME ............................................................................................ 70 

Using the Portal Host Web Application ........................................................................... 70 

Testing a Portal ............................................................................................................. 72 

Performance and Best Practices ....................................................................................... 73 

Inlining Resources vs Retrieving via a URL ..................................................................... 73 

Embedded vs External Resources .................................................................................. 73 

Using HTML Widgets in Portals ........................................................................................ 74 

Identifying the Portal .................................................................................................. 74 

Identifying the Signed-In Client .................................................................................... 74 



Page 5 of 74 

Using Portal Styling ..................................................................................................... 74 

 



Page 6 of 74 

Disclaimer 
This document contains information that may be subject to change at any stage. 

All code examples are provided "as is". 

This document may reference future functionality not currently available in the release version 

of finPOWER Connect. 

Copyright Intersoft Systems Ltd, 2020. 

 



Page 7 of 74 

Version History 
Date Version Name Changes 

21/09/2017 1.00 PH Created. 

11/01/2019 1.01 PH Updated for new Portal functionality. 

10/04/2019 1.02 PH Updated Partial Page section. 

15/05/2019 1.03 PH Client Sign-In Method added. 

08/08/2019 1.04 PH Updated portal.Navigate example. 

08/10/2019 1.05 PH Tag Overrides, Document Manager File, version 3.02.03 Login Theme 
options, Portal Host. 

06/11/2019 1.06 PH Page Tag1, Tag2 and Tag3 added. 

13/01/2020 1.07 PH Custom error pages added. 

14/01/2020 1.08 PH PWA properties and method for portal object. 

21/01/2020 1.09 PH Date-related tags added. 

29/01/2020 1.10 PH Updated 401 sample page code. 

07/02/2020 1.11 PH Added Using HTML Widgets in Portals section. 

25/02/2020 1.12 PH Version 3.03 additions such as Client Preferred Name. 

03/06/2020 1.13 PH portal.Navigate2 method added. 

29/07/2020 1.14 PH User Data plus Theme Logo Url tags added. 

17/08/2020 1.15 PH portal.GetPlatformCompatibilityWarning method, customising CSS for login 
form, defaults for Constant and UserData tags. PASSWORD_RESET_EMAIL 
special resource. 

12/10/2020 1.16 PH Theming enhancements. Partial Pages, Script Callbacks section. User Data 
Field for authentication. Performance and Best Practices. Portal 
authentication page changes. 

06/11/2020 1.17 PH Special Page Codes section. 

05/01/2021 1.18 PH Forced password change plus other changes for 3.03.05 

08/04/2021 1.19 PH PartialPageId tag. 

08/06/2021 1.20 PH MFA added, Authentication page renamed to Security. 

16/06/2021 1.21 PH Cookies section added plus enhanced hosting information. 

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

 



Page 8 of 74 

Introduction 
This document discusses finPOWER Connect Portals. 

It assumes a knowledge of the following: 

• The finPOWER Connect business layer 

• finPOWER Connect HTML Widgets, which includes: 

• HTML 

• JavaScript 

• Web development (client-side vs server-side Scripting) 

• CSS 

• jQuery 

External Hosting Considerations 
When hosting a Portal, you should be aware of the following: 

• Ideally, you will use the Portal Host application to access the Portal rather than having a 

direct link to Web Services. 

Resources 
There is also limited intellisense on the portal and page JavaScript objects and a "finPOWER 

Connect Widgets and Portals" Help file available via Alt+F1 when editing the Portal's Master 

Page HTML or a Page's content. 

Cookies 
Like most web applications, finPOWER Connect Portals uses cookies to some degree. 

IMPORTANT: Our cookies are not used for tracking. They are used to provide a login 

mechanism and to enhance the user experience. 

 

In Chrome or Microsoft Edge, you can see the cookies that we use by pressing F12, selecting 

the Application tab and looking at the "Cookies" entries: 

 

 

Under "Cookies", you may see the following: 

• _highDpi 

o This will be set to "true" or "false" depending on whether a high-DPI (retina) display has 

been detected. This is sent with every request to ensure that higher resolution versions 

of images and icons are delivered where possible. 

• __connected 



Page 9 of 74 

o This simply holds a "1" or "0" and is used to provide a better user experience, e.g., to 

vary any 401 messages and to allow the Portal to be signed out automatically when a 

browser tab is closed. 

• finCC_SessionId 

o This is simply the ASP.NET Session Id. By default, this cookie would be named 

"ASP.NET_SessionId". We simply assign it a custom name. 

• [PortalId].O, e.g. "CC.O" 

o This entry stores encrypted information relating to the current Client or User's login 

status. 

 

NOTE: When we utilise external libraries such as Google Charts or Google Addressing, these 

may create their own cookies. These are nothing to do with finPOWER Connect Cloud. 

 



Page 10 of 74 

Overview 
Portals represent Web applications that can be designed within finPOWER Connect and then 

used either internally (within finPOWER Connect) or, more importantly, externally via Web 

Services. 

Examples or what Portals may be used for are: 

• Client Portal 

o E.g., Clients can access the Portal via a Web Browser and view a list of their Accounts. 

• Dealer/ Broker/ Agent Portal 

o External Party Users can sign in, add Account Applications and view their Tasks. 

o NOTE: It is strongly recommended that you consider finPOWER Connect Cloud before 

embarking on creating a Portal that targets finPOWER Connect Users.  

• Public Loan Application Portal 

o Typically, a Loan Application form can be implemented as an HTML Widget. 

However, using a Portal to provide this functionality may be advantageous in certain 

situations. 

 

WARNING: Portals are not designed to cope with the load that a public-facing Website may 

undergo, hence, they should be limited to the sub-set of functionality that requires finPOWER 

Connect, e.g., a Loan Application process. 

 



Page 11 of 74 

Portals Form 
Portals are maintained via the Admin, Portals form. 

Like most other Admin libraries, Portals can be Exported and Imported. However, a special 

"Export Package" action exists for Portals. This will create an export package that contains not 

only the portal but also any Scripts that are referenced such as HTML Widgets via <%widget%> 

tags or portal.insertWidget JavaScript calls. 

NOTE: Packages must be imported via the File, Import/ Export Information, Import 

Information wizard. 

General 
General options. 

 
 

• Code and Description 

o Code: 

 A unique code up to 10 characters long. 

o Active: 

 Inactive Portals cannot be accessed via Web Services. 

o Description: 

 A description of the Portal, up to 50 characters long. 

• Portal Name and Icon 

o Name: 

 The Portal Name if you want this to be different to the Descripiton. 

o Icon: 

 This Icon to display when running the Portal from within finPOWER Connect. 

 This will also be the Portal's Favourite Icon when running from Web Services unless a 

special Resource named 'favicon' is defined on the Resources page. 



Page 12 of 74 

• Beta Status 

o Beta Portal (still undergoing testing)? 

 Just a way to flag that the Portal is not ready for production use. 

• Notes 

o Notes regarding the Portal. 

 

NOTE: Making a Portal inactive prevents Users from accessing it. This can also be achieved 

within Web Services Administration using the Portal's "Stop" button: 

 

    

  



Page 13 of 74 

Security 
Defines the type of user that this Portal targets and other security related options. 

The information available depends on what "Method" is selected. 

 

 

 
 

• Authentication Method 



Page 14 of 74 

o Method: 

 This determines who can access this Portal: 

• User – a finPOWER Connect User, including External Users such as Dealers. 

• Client – a finPOWER Connect Client. 

• Unauthenticated – anyone, e.g., a publicly available Loan Application wizard. 

• Session options 

o Timeout: 

  The Session Timeout for Portals running outside of finPOWER Connect. 

o Force re-sign-in when opening a new browser tab? 

 Forcing re-sign-in when opening a new browser tab means that if a user closes their 

browser (or browser tab) then opening another tab to a Portal URL will redirect to the 

sign-in form, it is not related to the Session Timeout. 

 

WARNING: Browser behaviour such as Chrome's 'Duplicate' and 'Reopen closed tab' 

may not respect this setting since they preserve all of the original page's data when 

opening a tab. 

• Secret Key 

o Secret Key: 

 A string of characters at least 30 characters long that is used when encrypting access 

to the Portal. 

NOTE: Changing the Secret Key will invalidate any Clients or Users accessing this Portal 

outside of finPOWER Connect. 

This will not sign the users out but will prevent any further interaction with the Portal without 

re-signing in. 

This can also be achieved within Web Services Administration using the Portal's "Invalidate All 

Sessions" button: 

 

    

Client-Specific 

• HTML Message to display if Access is Denied 

o Allows an HTML formatted message to be defined. This will be displayed to the Client if 

their credentials are correct, but they are denied access due to restrictions defined in the 

next section. 

 

NOTE: This message is only used when signing in to the Portal via Web Services. 

• Other options to restrict Client from accessing this Portal 

o Client Groups: 

 A range of Client Groups that prevents Clients NOT in this range from accessing the 

Portal. 



Page 15 of 74 

o User Data Field: 

 The name of a Boolean field stored in the Client's User Data. If this field does not exist 

or is not True then the Client will not be able to access this Portal. 

o Web Data Field: 

 The name of a Boolean field stored in the Client's Web User Data. If this field does not 

exist or is not True then the Client will not be able to access this Portal. 

• Other Authentication options 

o Sign-In Method: 

 Defines how a Client can Sign In. 

• Client Id or Web User Id 

o The Client can use either their Client Id or Web User Id to sign in. 

• Client Id 

o The Client can use only their Client Id to sign in. 

• Web User Id 

o The Client can use only their Web User Id to sign in. 

▪ NOTE: This may be desirable, e.g., where a Client’s Web User Id is an Email 

address which a Client is much more likely to remember than their finPOWER 

Connect Client Id. 

o Web User Id is Email for Password Reset and MFA? 

 Indicates whether Client’s are signing in using their Web User Id which is also an Email 

address that can be used to send Password Reset links and used for Multi-Factor 

Authentication. 

o Enforce Password Change? 

 When checked, the Portal will automatically display the Change Password form to the 

Client upon signing in if the Client's "Force Client to change their Web Password the 

next time they sign in" option is checked. 

User-Specific 

Most of these options are identical to those on the finPOWER Connect Cloud Configuration 

form. 

• Other Authentication options 

o Enforce Password Change? 

 When checked, the Portal will automatically display the Change Password form to the 

User upon signing in if the User's "Force User to change Password when they next 

login " option is checked. 

  



Page 16 of 74 

Multi-Factor 
As of version 3.04 of finPOWER Connect, Portals support Multi-Factor Authentication (MFA) 

which is often referred to as Two-Factor Authentication (2FA). 

 

 

• Multi-Factor Authentication options 

o Method: 

 The Multi-Factor Authentication Method to use for this Portal: 

• None 

• Email Code 

o Every time the User/ Client signs in they will be emailed a code that they must 

then enter to complete the sign-in process. 

• Authenticator App 

o Upon first signing in, the User/ Client will be prompted to use an Authenticator 

App (such as Google Authenticator) to scan a QR code. For future sign-ins, they 

will be prompted to enter the 6-digit code displays in this App. 

• SMS Code 

o Every time the User/ Client signs in they will be sent an SMS message containing 

a code that they must then enter to complete the sign-in process. 

o Defer Days: 

 If this is non-zero, Clients and Users logging into the Portal will have the option to 

"Skip this step for X days?" 

• If this option is checked then the Client or User will be able to sign in using just 

their User/ Client Id and Password for the specified period. 

 

  



Page 17 of 74 

PWA 
Allow to Portal to support Progressive Web App functionality. This means that the Portal can be 

displayed as a shortcut on a device's home screen (e.g., an iPhone) and appear like a native 

App. 

 

  



Page 18 of 74 

Options 
Miscellaneous options. 

 
 

• Minimum Form size when displayed in finPOWER Connect 

o Width: 

 The minimum width (in pixels) of the inside area of the Portal form when the Portal is 

displayed within finPOWER Connect. 

o Height: 

 The minimum height (in pixels) of the inside area of the Portal form when the Portal is 

displayed within finPOWER Connect. 

• Resources required for all Pages 

o CSS Stylesheet for HTML Widgets 

 Indicates whether to include the HTML Widgets Stylesheet for ALL Portal Pages. 

o CSS Stylesheet for Summary Page (Version 2) 

 Indicates whether to include the Summary Page (Version 2) Stylesheet for ALL Portal 

Pages. 

o jQuery (required for Widget controls and Portal functionality) 

 jQuery will ALWAYS in included since it is required for Portal and HTML Widget 

functionality. 

• Other Options 

o Allow a Password Reset Link to be sent? 

 Indicates whether a Client or User Portal should allow a Password Reset Link to be 

sent via email. 

 

  



Page 19 of 74 

Theme 
Allows colours and logo images to be defined that can be used via <%Theme%> tags, e.g., within 

a CSS file. 

 

 
 

• Theme 

o The value defined here can be dynamically included within <%Resource%> tags using the 

special [THEME] tag, e.g.: 

 
<%Resource:[THEME].theme%> 

 
<%Resource:CSS_[THEME]%> 

• Theme Colours 

o This allows various colours to be defined that can be used via <%Theme%> tags, e.g., 

within a CSS file or LESS file. 

o WARNING: Avoid using system colours such as "ActiveBorder", particularly when using 

LESS since the LESS compiler may fail and these colours are typically only supported 

under Windows Internet Explorer. 

• Theme Logo URLs 

o This allows up to 4 logo files to be defined. 

o These can be URLs to an external Website or images that are embedded directly in the 

field via the button to the right of each field. 

 NOTE: There is a 64KB limit for embedded URLs (data URIs). Also, it is more efficient 

to link to an external URL where possible. 



Page 20 of 74 

o As per the Theme Colours, these can be used via <%Theme%> tags. 

• Login Form Theme 

o You can specify one of the Logos defined in the Theme Logo URLs section to appear at 

the top of the Login form in place of Portal Name. 

 You can optionally specify the height at which to fix the Logo size. 

• If unspecified, this will be 80px (the default). 

 You can also opt to centre this logo. 

 NOTE: Logos are scaled to 80px high when displayed on the Login form. 

o A Background Image for the Login form can be entered as either the URL of an externally 

hosted image or as an Image-type Resource defined within the Portal. 

 NOTE: If using a Portal Resource, it must be configured to "Allow direct download via a 

URL" and not require Authenticated access. 

 

NOTE: By default, this page shows a generic preview of the specified Theme information. 

However, adding a special Resource named "portalPreview" HTML resource allows a custom 

preview of the Portal to be defined as shown in the screen-shot above. 

  



Page 21 of 74 

HTML Widgets 
Allows theming to be defined for any HTML Widgets hosted in this Portal and for any HTML 

Widget Controls (created via the widget.UI or page.UI objects) used in Portal pages. 

This is almost identical to the corresponding page on the finPOWER Connect Cloud 

Configuration form. 

 

  



Page 22 of 74 

Master Page 
Defines a template for the Portal. 

This would typically be an HTML document with placeholders representing where the content of 

other pages should appear, e.g., the Master Page would contain headers, footers, menus etc 

and a section where the individual page content should be shown. 

NOTE: Although not necessary, use of a Master Page is recommended since it allows 

centralisation of standard site layout such as Headers, Menus and Footer areas. 

Script Code 
The Master Page Script code. 

This has the same function signature as HTML Widget Scripts and Portal Page Scripts. 

NOTE: If you have functions that you wish to call client-side from more than one page then 

they can be added to the Master Page Script Code and the portal rather than page object 

used to call them. 

Alternatively, you could create a "Script Function Library" type Resource which means then 

functions would be callable client-side from any page and would also be available server-side. 

  



Page 23 of 74 

Pages 
Defines Portal Pages. 

A Portal must contain at least one Page to be useful. 

 
 

The order of pages in the grid can be used to determine a site map which can be used to 

automatically generate a menu. 

NOTE: On the IDE page, Pages are shown in alphabetical order to make them easier to locate. 

  



Page 24 of 74 

Resources 
Defines a list of Resources (such as images) used by the Portal. 

Constants 
Defines a list of Constants that can be used by the Portal Script, Portal Page Scripts or inserted 

into HTML and CSS via <%Constant%> tags. 

State 
Allows Portal State to be viewed and cleared. 

Test 
Allows the Portal to be tested within finPOWER Connect or in an External Web Browser. 

Publish 
Allows the Portal to be published to a remote database at the click of a button. 

WARING: Publishing a Portal copies only the Portal record to the remote database. It does not 

include any supporting Scripts, Documents etc and so should be used with caution. 

  



Page 25 of 74 

IDE 
Allows the Portal's Scripts, Pages and Resources to be edited in an IDE-style environment 

where multiple tabs can be opened at once. 

 
 

Open tabs (and their positions) are preserved on a per Portal, per User basis. 

Tabs can be moved about in the Tab well by dragging them. 

By default, double-clicking a Page will open its HTML view. Right-clicking the Page in the 

explorer allows you to select between HTML and Script Code. 

  



Page 26 of 74 

History 

A Portal history can be maintained on a per-User basis. 

NOTE: This is NOT source control, it is simply a way of keeping backups so that developers 

can record progress and, if necessary, view older copies of code. 

Under User Prefenreces, Developer, General, you can opt to create a backup copy of a Portal 

prior to each save: 

 

 

You can also enforce that, before editing Portals, a User has their auto-backup settings turned 

on under Global Settings, Developer, General: 

 
 

The "History" button at the top of the IDE page shows a list of these backups: 

 

NOTE: By default, only entries against which comments are recorded will be shown. 

This improves performance and also means that the grid only shows the more important 

saves. 

Selecting a Page or Resource in the explorer highlights entries in the History where that Page 

or Resource was changed: 



Page 27 of 74 

 
 

You can then right-click and item in this grid to compare it against the current version or, 

select two rows in the History grid and compare them: 

 

 

This will display a "Compare" form: 

 

 

Right-clicking an entry in the History grid also gives you the option of restoring that version of 

the Portal as a new, unsaved record, i.e., the current Portal record WILL NOT BE TOUCHED IN 

ANY WAY. 

From here, you can copy and paste items or text between the backup and the current Portal. 

Portal History records are stored in the folder configured under User Preferences, Developer, 

General and can be viewed from Window Explorer: 

 

 



Page 28 of 74 

Manually Adding History Entries 

Entries (XML files) can be manually added to this history using the "Tools" button to display 

the full Portal Auto-Backup History form and clicking the "Add" button. 

This is useful, for example if, as a developer, you receive a file that someone else (e.g., a 

Client or Dealer) has modified and you want to keep track of it in your history. 

Any files added in this way have a special '_(Imported)" suffix, as shown in the screenshow 

above. 

NOTE: Of course, you would still need to update your own Portal record to reflect these 

changes. 

Purging History Entries 

Over time, you may accumulate hundreds of history files so it is recommended you clean up 

this folder (i.e., delete older files) every so often; not just for the sake of storage but having a 

large history list will slow down the building of the History grid, particularly when a particular 

Page or Resource is selected in the IDE explorer. 

Each file it a complete backup of the Portal so deleting files will not corrupt the backup in any 

way. 

The "Purge" button on the Portal Auto-Backup History form allows you to quickly remove all 

non-commented files that are older than a given number of days. By default, this is 32 days 

but can be changed under Global Settings, Developer, General: 

 

 

 



Page 29 of 74 

Authentication and Security 

Authentication Method 
The Authentication page of the Portals form allows an Authentication Method to be specified. 

This determines which type of user can access the Portal and, if necessary, a sign-in form will 

be presented for the user to enter their credentials. 

User 

• A finPOWER Connect User. 

• When run from within finPOWER Connect, the current User is assumed and no sign-in page 

is used. 

• When running from Web Services, the User must have "Web Access" enabled: 

 

 

• Access to the Portal can be restricted to a certain type of External User or based on a range 

of External Parties or Roles or, on a Permission Key. This is done via the "Authentication" 

page of the Portals form: 

 

 
 

NOTE: By default, External Users cannot access any User-based Portals. 

  



Page 30 of 74 

Client 

• A finPOWER Connect Client. 

• The Client must have "Web Access" enabled: 

 

 
 

• Access to the Portal can be restricted, e.g., to Clients within a range of Client Groups. This 

is done via the "Authentication" page of the Portals form: 

 

 

Unauthenticated 

• No authentication is required to use this Portal. 

  



Page 31 of 74 

Session Timeout and Secret Key 

Session Timeout minutes 

The Session Timeout defines how many minutes of inactivity before a Client or User is locked 

out of their Portal Session. 

When talking about "Inactivity" with regard to Web applications, this typically means the time 

since the last request to the Web server was made. In the case of Portals, this can be 

interpreted as meaning the last time the Portal or Portal Page Script was called. 

Secret Key 

The Secret Key is a random string of characters used when encrypting a Portal Session. 

IMPORTANT: Changing the Secret Key will invalidate all currently signed in Portal User 

sessions and force the Client or User to sign in again. 

The Portals page of the Web Administration facility has an "Invalidate All Sessions" button for 

each Portal that changes the Secret Key: 

 



Page 32 of 74 

Additional Authentication Checks 
Once a User or Client has successfully entered their credentials, you may wish to perform 

additional checks such as restricting a Portal only to Clients that belong to a specific Client 

Group. 

Portal 

You can perform additional authentication checks to prevent Users or Clients from accessing 

the entire Portal. 

These checks are scripted in the Portal's Script Code page using a special eventId of 

"_Authenticate", e.g.: 

' Objects 

Private mPortalHandler As finPortalHandlerBL 

 

Public Function Main(eventId As String, 

                     parametersJson As String, 

                     startUpParametersJson As String, 

                     hostingContext As isefinHtmlWidgetHostingContext, 

                     requestInfo As finScriptRequestInfo, 

                     ByRef returnValue As String) As Boolean 

 

  Dim Client As finClient 

 

  ' Assume Success 

  Main = True 

 

  ' Initialise 

  mPortalHandler = DirectCast(ScriptInfo.Properties.GetObject("PortalHandler"), 

finPortalHandlerBL) 

 

  ' Handle Events 

  Select Case eventId 

    Case "" 

      ' Main event, i.e., return initial Master Page content 

      returnValue = ScriptInfo.TemplateText 

 

    Case "_Authenticate" 
      ' Additional Authentication 

      If mPortalHandler.Client.ClientId = "PAUL" Then 

        Main = False 

        finBL.Error.ErrorBegin("Client 'PAUL' is not allowed to use this Portal.") 

      End If 

 

    Case Else 

      If eventId.StartsWith("_") Then 

        ' Ignore system events 

      Else 

        Main = False 

        finBL.Error.ErrorBeginFormat("Unhandled event '{0}'.", eventId) 

      End If 

  End Select 

 

End Function 

 

NOTE: All system events such as "_Authenticate" start with an underscore hence the Case 

Else code ignores these if they are unhandled to prevent any future issues if more system 

events are added. 

Page 

If a Page requires special Authentication then the main event that fetches the Page's HTML can 

be used in the Page's Script Code, e.g.: 

' Objects 

Private mPortalHandler As finPortalHandlerBL 

 

Public Function Main(eventId As String, 



Page 33 of 74 

                     parametersJson As String, 

                     startUpParametersJson As String, 

                     hostingContext As isefinHtmlWidgetHostingContext, 

                     requestInfo As finScriptRequestInfo, 

                     ByRef returnValue As String) As Boolean 

 

  ' Assume Success 

  Main = True 

 

  ' Initialise 

  mPortalHandler = DirectCast(ScriptInfo.Properties.GetObject("PortalHandler"), 

finPortalHandlerBL) 

 

  ' Handle Events 

  Select Case eventId 

    Case "" 

      ' Additional Authentication  
      If mPortalHandler.Client.ClientGroupId <> "SC" Then 

        Main = False 

        finBL.Error.ErrorBegin("Client does not belong to the 'Special Clients' group.") 

      End If 

       

      ' Main event, i.e., return initial HTML content (excluding html and body tags) 

      If Main Then returnValue = ScriptInfo.TemplateText 

       

    Case Else 

      Main = False 

      finBL.Error.ErrorBeginFormat("Unhandled event '{0}'.", eventId) 

  End Select 

 

End Function 

 

This will result in an unauthorised Client or User seeing the following: 

  



Page 34 of 74 

Custom Login Form 
By default, User or Client Portals use a built-in Login (sign-in) form (this has a special URL of 

"@LOGIN"), e.g.: 

 

Simple Style Changes 

The "HTML Widgets" page of the Portals form allows custom CSS to be entered. 

Using this, simple changes can be made to the page styling, e.g., the "Sign In" button: 

.is-builtin-page-login { 
  .is-portal-form { 
    background-color:cyan !important; 
    border:4px solid green !important; 
  } 
 
  #cmdLogin { 
   border:4px solid yellow !important; 
  } 
} 

 



Page 35 of 74 

 
 

WARNING: Be very careful when making CSS changes to avoid accidentally styling other 

parts of the Portal unintentionally. 

Custom Page 

However, by defining a page with a special code of "LOGIN", a custom sign-in page can be 

defined. 

WARNING: This page will be ignored if it is not "Active" or does not "Allow Unauthenticated 

access". 

 

The following example shows HTML for a custom Login form (no Script Code is required): 

<h1>Sign In to <%PortalName%><h1> 

 

<div id="divWarning" style="display:none"></div> 

 

 

<form onsubmit="return SignIn()"> 

  <input id="id" placeholder="Client Id" maxlength="50" autocorrect="off" autofocus/> 

  <br/> 

  <input id="password" type="password" placeholder="Password" maxlength="50" autocorrect="off"/> 

  <br/> 

  <button id="cmdLogin" type="submit">Sign In</button 

</form> 

 

 

<script> 

function SignIn() { 

  // Validate 

  var id = $("#id").val(); 

  var password = $("#password").val(); 

  if(!id) { $("#id").focus(); return false; }; 

  if(!password) { $("#password").focus(); return false; }; 

 

  // Authenticate 

  portal.AuthenticateClient(id, password, SignIn_Fail); 



Page 36 of 74 

 

  // Prevent Form from submitting 

  return false; 

} 

function SignIn_Fail(data) { 

  // Show Error 

  $("#divWarning").html(page.UI.HtmlEncode(data)); 

  $("#divWarning").show(); 

  $("#id").focus(); 

} 

</script> 

 

This presents a simple, custom Login form: 

 

 

NOTE: This sample does not include functionality to reset the password (as provided by the 

"I've forgotten my password" link on the built-in page. 

As over version 3.03.04, pasting the template HTML for a Page with a code of "LOGIN" will 

generate a fully functional page based on the built-in form. 

  



Page 37 of 74 

Custom Error Pages 
The following error pages can be replaced with custom pages: 

• 401 (Unauthenticated) 

• 404 (Not Found) 

 

The Code dropdown on the Portal Page wizard contains special codes of ERROR_401 and 

ERROR_404. 

Giving a page one of these codes will replace the built-in error page. 

WARNING: This page will be ignored if it is not "Active" or does not "Allow Unauthenticated 

access". 

401 (Unauthorised) 

This page is displayed when the user is not authenticated or their session has expired. 

In the example below, unremarking the Auto Sign-In JavaScript code forces the page to return 

to the sign-in page automatically. 

<html> 

<body> 

 

  <img src="<%ResourceDataUri:LOGO%>"/> 

  <h1>Not authorised.</h1> 

 

  <script> 

   var returnToUrl = "<%Literal:ReturnToUrl%>"; 

    

   // Auto Sign-In 

   //portal.SignIn(returnToUrl); 

  </script> 

 

  <a href="javascript:portal.SignIn(returnToUrl)">Sign in and return to this page.</a> 

 

</body> 

</html> 

 

NOTE: A special literal named ReturnToUrl is provided to this page. 

404 (Not Found) 

This page is displayed when the user attempts to navigate to a page that does not exist. 

The example below shows a simply custom 404 page: 

<html> 

<body> 

 

  <img src="<%ResourceDataUri:LOGO%>"/> 

  <h1>Oops, this page could not be found!</h1> 

 

</body> 

</html> 

 



Page 38 of 74 

Navigation and Hyperlinks 
Although Portals, at least when hosted outside of finPOWER Connect, are Websites, it is 

important to understand how to navigate between Portal pages. 

The safest way is to use the portal.Navigate() method although, for convenience, anchor 

tag "href" attributes are handled automatically. 

WARNING: Never use window.location.href to attempt to navigate between Portal pages. 

portal.Navigate 
The portal JavaScript object has a Navigate method which is used to move between Portal 

pages or to reload the current page with URL parameters, e.g.: 

portal.Navigate("Home"); 
 

portal.Navigate("Account?id=L10000"); 

 

This can also be called from hyperlinks, e.g.: 

<a href="javascript:portal.Navigate('Home')">Home</a> 

portal.Navigate2 
As of version 3.03.02 of finPOWER Connect, a Navigate2 method is available. 

This differs from the Navigate method in that you do not have to URL encode any parameters. 

Instead, a JavaScript object containing parameter values can be passed to the method, e.g.: 

portal.Navigate2("Apply", { term: "2w", amount: 50 }); 

portal.Open 
A different Portal can be opened, e.g., when moving between a public Portal to a Client Portal, 

e.g.: 

portal.Open("CP"); 
 

portal.Open("CP", true); 

NOTE: The second parameter indicates whether to open the Portal in a new browser window 

(or tab). 

Anchor Tags "href" Attribute 
Any anchor tags with an href attribute that starts with either "/" or "portal://" will 

automatically be directed to the respective Portal page, e.g.: 

<a href="/Test">Test</a> 

 

<a href="portal://Test?id=123">Test with Parameter</a> 

portal.OpenPageInModal 
If you are creating a Single Page Application (SPA) or just want to show another page in a 

Modal form then the portal JavaScript object's OpenPageInModal method allows this, e.g.: 



Page 39 of 74 

portal.OpenPageInModal("Settlment", 

                       { accountId: "L10000" }); 
 

portal.OpenPageInModal("Settlement", 

                       { accountId: "L10000" }, 

                       { title: "Settlement Summary" }); 

NOTE: The second parameter is a JavaScript object containing parameters to pass to the page 

(instead of using the URL). 

The third parameter is the options to pass to the widget.UI.Modal form. 

portal.ShowPasswordChange 
This is a special method that shows either the built-in or a custom Password Change page and 

allows a return URL to be specified to return to once the Password has been changed, e.g.: 

portal.ShowPasswordChange("/Home"); 
 

portal.ShowPasswordChange("/", true, 

                       { title: "Update Your Password" }); 

 

NOTE: The second parameter of this method allows the page to be shown in a Modal form and 

the third parameter is the options to pass to the widget.UI.Modal form. 



Page 40 of 74 

Master Page 
A Master Page is used to define an overall template for the Portal. 

Via "Content blocks", a Portal Page can inject its content into one of more places on the Master 

Page.  

NOTE: This is a similar concept to ASP.NET Master Pages, but with a slightly different syntax. 

Pages can opt to not use the Master Page, e.g., a custom Login page may not suit the Master 

Page template. 

The following sections cover the various tags that can be used in Master Pages or inserted via 

right-clicking in the Master Page field: 

 

  



Page 41 of 74 

Content blocks 
Special <%Content%> tags are used in the Master Page to define regions that can be populated 

by a Portal Page, e.g.: 

<!DOCTYPE html> 

<html> 

<head> 

</head> 

<body> 

 

  <!-- Header Begin --> 

  <h1><%PortalName%></h1> 

  <!-- Header End --> 

 

 

  <!-- Content Begin --> 

  <h1><%PageTitle%></h1> 

 

  <%Content:Main%> 
  <!-- Content End --> 

 

 

 

  <!-- Footer Begin --> 

  <footer> 

    Standard text to appear on each page. 

  </footer> 

  <!-- Footer End --> 

 

</body> 

</html> 

 

A Master Page can contain one or more content blocks. 

In the above example, a single content block with a name of "Main" is defined. 

  



Page 42 of 74 

Literals 
Literals are a special type of Tag that can exist in the Master Page or a Portal Page. 

Once the Page has been fetched, all Literals will be replaced by values that have been set in 

the Script (this could be the Master Page Script or a Portal Page Script), e.g.: 

<!DOCTYPE html> 

<html> 

<head> 

</head> 

<body> 

 

  Hello, your name is: 

 

  <%Literal:PersonsName%> 
 

</body> 

</html> 

 

Literals are populated via a special ScriptInfo.Properties Key/ Value List. They would 

typically be populated when fetching either the Master Page or the Portal Page's content, i.e., 

in the "" event, e.g.: 

' Handle Events 

Select Case eventId 

  Case "" 

    ' Main event, i.e., return initial Master Page content 

    returnValue = ScriptInfo.TemplateText 

 

    ' Set Literals 

    With ScriptInfo.Properties 

      .SetString("PersonsName", "Paul") 

    End With 

 

End Select 

 

 

  



Page 43 of 74 

Constants 
Inserts a Constant into the page. 

<%Constant:MyColour%> 

 

Constants are defined on the "Constants" page of the Portals form. 

You can also specify a default value in parentheses, e.g.: 

<%Constant:MyColour(blue)%> 

 

This is particularly useful when using tags within JavaScript where having a missing Constant 

(i.e., a name that does not exist in the Constants grid) may produce unpredictable results, 

e.g.: 

var mAccounts_ShowAccountActions = <%Constant:Accounts_ShowAccountActions(false)%>; 

NOTE: From version 3.03.03, if an unknown Constant name is specified then, instead of just a 

blank value being inserted (which would break JavaScript), the value null is inserted. 

This may look odd if the tag is being used simply to insert text into HTML or CSS but has the 

benefit of not preventing JavaScript code from compiling (or being invalid).  

 

 

  



Page 44 of 74 

User Data 
Inserts a User Data value into the page. 

<%UserData:MyValue%> 

 

Constants are defined in the finPortal.UserData property and can only be created and 

updated via Script code. 

Typically, User Data can be used as an alternative to Constants by a Configuration utility. 

You can also specify a default value in parentheses, e.g.: 

<%UserData:MyValue('hello world')%> 

 

This is particularly useful when using tags within JavaScript where having a missing User Data 

item (i.e., a name that does not exist in the Key/ Value list when viewing User Data from the 

Audit page of the Portals form) may produce unpredictable results, e.g.: 

var mAccounts_ShowAccountActions = <%UserData:Accounts_ShowAccountActions(false)%>; 

NOTE: From version 3.03.03, if an unknown User Data name is specified then, instead of just 

a blank value being inserted (which would break JavaScript), the value null is inserted. 

This may look odd if the tag is being used simply to insert text into HTML or CSS but has the 

benefit of not preventing JavaScript code from compiling (or being invalid).  

 

 

  



Page 45 of 74 

SiteMap 
This is a special tag that inserts a hierarchical list (HTML unordered list) into the document. 

<%SiteMap%> 

 

This creates HTML in the following format: 

<ul menu-id='root' menu-level='0'> 

  <li class='current'><div><a href="javascript:portal.Navigate('HOME')">Accounts</a></div></li> 

  <li><div><a href="javascript:portal.Navigate('APPLY')">Apply for Loan</a></div></li> 

  <li><div><a href="javascript:portal.Navigate('MESSAGES')">Messages</a></div></li> 

  <li class='has-sub-menu'><div><a>Other</a></div> 

    <ul menu-id='MY' menu-level='1'> 

      <li><div><a href="javascript:portal.Navigate('MY')">My Details</a></div></li> 

      <li><div><a href="javascript:portal.Navigate('PWD')">Change Password</a></div></li> 

    </ul> 

  </li> 

  <li><div><a href="javascript:portal.Navigate('CONTACT')">Contact Us</a></div></li> 

</ul> 

 

This list can then have CSS applied to form a menu, e.g.: 

TODO: 

 

 

  



Page 46 of 74 

Resources 
These are special tags that allow Resources to be used in the page. 

Generally, you will be using a URL to a resource, e.g.: 

<link rel="stylesheet" type="text/css" href="<%ResourceUrl:CSS_Menu%>"/> 

 

<img src="<%ResourceUrl:Logo%>"/> 

 

However, there may be occasions where you want to use a Data URI instead. A Data URI 

embeds the entire resource in the Web page rather than referencing an external file.  

A common use for using a Data URI would be to embed a small icon, such as a warning icon, 

within a CSS resource, e.g.: 

.warning 

{ 

  border: 2px solid red; 

  background-image: url(<%ResourceDataUri:WarningIcon%>); 

} 

Replaceable [THEME] Tag 

A "Theme" can be defined on the Theme page of the Portals form. 

This can then be substituted dynamically into Resource tags, e.g.: 

<%Resource:[THEME].theme%> 

 

If the "Theme" on the Theme page of the Portals form was set to "TEST", this would resolve to 

the following: 

<%Resource:TEST.theme%> 

 

  



Page 47 of 74 

Resource Bundles 
Each CSS, Less or JavaScript Resource can be given a "Bundle Name". A Resource Bundle tag 

can then be used to include all of these resources into a Master Page or Page instead of listing 

each of the Resources. 

This generates the appropriate <link> and <script> HTML tags, e.g.: 

<head> 

 

<%ResourceBundle:Common %> 

 

</head> 

 

  



Page 48 of 74 

Tags 
Tags are replaced by information relating to the Portal, Page or Client/ User, e.g.: 

<%ClientFirstName%> 

 

Tags can be typed in manually or inserted by right-clicking the Master Page or Portal Page 

HTML. The following Tags are available to both the Master Page and Portal Pages: 

 

Tag Description 

PortalId The Portal Id 

PortalName The Portal Name 

PageId The Portal Page Id 

PageTag1 Custom Tag 1 for this Portal Page. 

PageTag2 Custom Tag 2 for this Portal Page. 

PageTag3 Custom Tag 3 for this Portal Page. 

PageTitle The Portal Page Title 

PageSummary The Portal Page Summary 

ParentPageId If used in a Partial Page, this will return the Id of the Page hosting 

the Partial Page. Otherwise it simply returns the current Portal 

Page Id. 

ClientId The Client Id or blank if there is no authenticated Client 

ClientName The Client Name or blank if there is no authenticated Client 

ClientFirstName The Client First Name or blank if there is no authenticated Client 

ClientLastName The Client Last Name or blank if there is no authenticated Client 

ClientPreferredName The Client Preferred Name (or their First Name if unspecified) or 

blank if there is no authenticated Client 

UserId The User Id or blank if there is no authenticated User 

UserName The User Name or blank if there is no authenticated User 

ExternalPartyId The External Party Id or blank if there is no authenticated User or 

the authenticated User is not an external User 

ExternalPartyName The External Party Name or blank if there is no authenticated 

User or the authenticated User is not an external User 

CurrentDate The current database date. 

CurrentDateTime The current database date and time. 

CurrentDateTimeZone The current database time zone. 

CurrentYear The current database year. 

Overriding Tags 

Tag values can be overridden. 

For example, you may have a page showing Account details where you want to include the 

Account Id as part of the Page Title. 

When fetching the Page's initial HTML (the "" event), you can set overriding values for tags as 

follows: 

Select Case eventId 

  Case "" 

    ' Main event, i.e., return initial HTML content 



Page 49 of 74 

    returnValue = ScriptInfo.TemplateText 

     

    ' Include Account Id with Page Title 

    mPortalHandler.TagOverrides.Add("PageTitle", "Account " & mAccountId) 

 



Page 50 of 74 

Theme 
These are special tags that allow the values defined on the "Theme" page of the Portals form 

to be inserted, e.g.:  

<%Theme:MainBackground%> 

 

These would typically be used in a CSS or LESS resource, e.g.: 

.page-header 

{ 

  border: 2px solid red; 

  background-color: <%Theme:MainBackground%>; 

 

  color: <%Theme:MainForeground%>; 

 

  background-image: url(<%Theme:Logo1%>); 

} 

 

The following Theme Tags are supported: 

 

Theme Tag Description 

MainForeground The Main Foreground colour. 

MainBackground The Main Background colour. 

Typically, this would be used for the site's header area. 

ContrastForeground The Contrast Foreground colour. 

ContrastBackground The Contrast Background colour. 

Typically, this would be used for elements such as tabs or headings (e.g., 

H1) tags. 

Other1 Other Colour 1. 

Other2 Other Colour 2. 

Logo1 The content of Logo 1 (a URL, or a data URI). 

Logo2 The content of Logo 2 (a URL, or a data URI) 

Logo3 The content of Logo 3 (a URL, or a data URI) 

Logo4 The content of Logo 4 (a URL, or a data URI) 

Logo1Url Logo 1 (if this is a data URI then it will NOT be inlined when 

accessed from Web Services and will be retrieved as a cacheable 

image) 

Logo2Url Logo 2 (if this is a data URI then it will NOT be inlined when 

accessed from Web Services and will be retrieved as a cacheable 

image) 

Logo3Url Logo 3 (if this is a data URI then it will NOT be inlined when 

accessed from Web Services and will be retrieved as a cacheable 

image) 

Logo4Url Logo 4 (if this is a data URI then it will NOT be inlined when 

accessed from Web Services and will be retrieved as a cacheable 

image) 

 

NOTE: Constants can also be used for theming in the same way as Theme tags. 



Page 51 of 74 

Widget 
This is a special tag that inserts an HTML Widget into the document. 

<%Widget:TEST:{ param1: "value1", param2: 123 }%> 

 

The Widget tag is divided into three parts, each separated by a colon: 

1. Widget 

The tag type identifier. 

2. Widget Id 

The Id of the HTML Widget Script, e.g., "TEST". 

3. Startup Parameters 

A JSON formatted String of Startup Parameters to be passed to the Widget. 

 

NOTE: Behind the scenes, this simply inserts HTML and JavaScript blocks and uses the 

portal.InsertWidget() JavaScript method to add the HTML Widget. 

Styling 

An HTML Widget is represented by an IFRAME element. When inserted into the page via a 

Widget tag, this IFRAME will be enclosed in a DIV element with the id of the Widget, e.g.: 

 

<div id="divWidgetABC" widget="ABC"><iframe/></div> 

 

The DIV tag contains a "widget" attribute which can be used as an alternative to the "id" tag in 

CSS to stye the content. The inner IFRAME which contains no style information and so will just 

appear as a small rectangular box containing the Widget. CSS can be used to style the Widget, 

e.g.: 

#divWidgetABC > iframe 

{ 

  border:none; 

  height:280px; 

  width:100%; 

} 

Security 

The HTML Widget will run in the same security context as the Portal, e.g., if the Portal is a 

"Client" portal then the HTML Widget's requestInfo parameter will reflect this, e.g.: 

If requestInfo.AuthenticatedUserType = isefinwsAuthenticatedUserType.Client Then 

  ' Authenticated Client 

  ClientId = requestInfo.AuthenticatedClientId 

End If 

 

 

 

 

 



Page 52 of 74 

Portal Pages 
Portal Pages can use all of the various tags such as <%Constant%> and <%Literal%> in the 

same way as Master Pages. The only exception is <%Content%> tags which only apply to Master 

Pages. 

Content blocks 
If the Portal Page is to use the Master Page as a template, it must define all of its content 

(HTML, Script and CSS if required) within one of more content blocks, e.g.: 

<content for="Main"> 
 
  <div id="tabGeneral" class="tabs"> 
    <ul> 
      <li tabId="Inbox">Inbox</li> 
      <li tabId="Sent">Sent</li> 
      <li tabId="Deleted">Deleted</li> 
    </ul> 
 
    <div id="pageInbox"><div id="gridInbox"></div></div> 
    <div id="pageSent"><div id="gridSent"></div></div> 
    <div id="pageDeleted"><div id="gridDeleted"></div></div> 
  </div> 
 
  <script> 
    // Script code for this Portal page 
  </script> 
 

</content> 

 

In the above example, all of the content between the content tags will be inserted into the 

Master Page at the <%Content:Main%> tag. 

NOTE: If the HTML does not contain any <content> blocks then the Master Page will not be 

used; instead, the Portal Page should define its own <html>, <head> and <body> tags. 

This allows Portal Pages to exist that are styled completely different from the rest of the Portal, 

e.g., a custom Login page. 

Site Map 
Portal Pages can build up a Site Map. 

The Website options section of the Portal Page wizard determines where (and if) the Page will 

appear in the Site Map, e.g.: 

 

 
 

These options affect the Site Map as follows: 

• Exclude this Page from the Site Map 

o This flags that the page should not appear in the Site Map, e.g., it can only be accessed 

from another page; not from the menu. 



Page 53 of 74 

o See the "ACCOUNT" and "LOGIN" pages in the screenshot below. 

• This Page should appear as a Heading 

o Useful for creating menus where the main menu item is not really a page, just a header 

for the items below it. 

o See the "OTHER" page in the screenshot below. 

• Indent Level 

o This allows you to build a site hierarchy. 

o Indenting a page indicates that it is a child or sub-page of the page above. 

o See the "OTHER", "MY" and "CHANGE_PASSWORD" pages in the screenshot below. 

 

The Portals form displays an outline of the Site Map, e.g.: 

 

 



Page 54 of 74 

Partial Pages 
Partial Pages are designed to represent reusable blocks that can be included in other pages, 

e.g., a Loan Calculator or pages in a Single Page Application (SPA). 

NOTE: Conceptually, Partial Pages are very similar to HTML Widgets. The main difference is 

that they are not hosted within an IFRAME and are included within the Portal record itself. 

A Page is flagged as a Partial Page via the Portal Page wizard: 

 

 
 

It can be inserted into other pages using the <%PartialPage%> tag, e.g.: 

<%PartialPage:QuickLoanCalculator%> 

Partial Page Guidelines 

NOTE: If the Partial Page contains no Script code or JavaScript and it simply represents a 

static piece of HTML, it would be served using an "HTML" type Resource instead. 

HTML Elements 

Give all HTML element ids a prefix that is unlikely to clash with other page elements, e.g.: 

<li> 

  <label for="qlc_Term">What is your preferred repayment term?</label> 

</li> 

<li> 

  <input id="qlc_Term" type="range"/> 

</li> 

<li> 

  <div> 

    <label id="qlc_TermMin" class="min"></label> 

    <label id="qlc_TermMax" class="max"></label> 

    <label id="qlc_TermSelected" class="selected"></label> 

  </div> 

</li> 

JavaScript 

Use a jQuery initialisation block and nest ALL code within this so it does not clash with other 

code in the page, e.g.: 

$(function () { 

  // Controls 

  var C = { 

    rsTerm: null, 

    lblTermMin: null, 

    lblTermMax: null, 

    lblTermSelected: null, 

  } 



Page 55 of 74 

 

  // -------- 

  // Controls 

  // -------- 

  C.rsTerm = widget.UI.RangeSlider("qlc_Term", { 

    minValue: 2, 

    maxValue: 10, 

    step: 1, 

    width: "100%", 

  }); 

  C.rsTerm.Value(C.rsTerm.MinValue()); 

  C.lblTermMin = $("#qlc_TermMin"); 

  C.lblTermMax = $("#qlc_TermMax"); 

  C.lblTermSelected = $("#qlc_TermSelected"); 

 

  // --------- 

  // Calculate 

  // --------- 

  function CalculationInvalidate() { 

  } 

}); 

Inline CSS and LESS 

You can easily inline CSS or LESS-based CSS (which is automatically parsed by the Portal 

handler if you use a type="text/less" attribute) using HTML <style> tags, e.g.: 

<style type="text/less"> 

.quick-loan-calculator { 

  border:1px solid blue; 

  display:inline-block; 

 

  > ul { 

    margin:0; 

    list-style:none; 

    padding:0; 

 

    > li { 

      margin:0; 

      padding:0; 

 

      /* Slider labels */ 

      > div { 

        min-height:24px; 

        position:relative; 

        margin:-6px 0 8px 0; 

 

        label { 

          display:inline-block; 

          font-size:13px; 

          position:absolute; 

          width:auto; 

          left:unset; 

          right:unset; 

          white-space: nowrap; 

 

          /* Min */ 

          &.min { 

            left:0; 

          } 

 

          /* Max */ 

          &.max { 

            right:0; 

          } 

 

          /* Selected */ 

          &.selected { 

            border:1px solid rgba(0, 0, 0, 0.2); 

            border-radius:8px; 

            background-color:<%Theme:ContrastColourBackground%>; 



Page 56 of 74 

            color:<%Theme:ContrastColourForeground%>; 

            padding:4px; 

            top:-48px; 

            right:unset; 

          } 

        } 

      } 

    } 

  } 

} 

</style> 

 

NOTE: The advantage of inlining styles is that its helps make the entire Partial Page self-

contained without any reliance on other Resources. 

The advantage of using LESS is that you can nest styles in a more readable fashion which is 

ideal for Partial Pages. 

Constants 

If the Partial Page requires any configuration in the main Portal, it is recommended that you 

name all constant using a prefix and dot separator, e.g. "QuickLoanCalculator.AccountTypeId": 

 

 

Multi-Use Partial Pages and Avoiding Element ID Conflicts 
If you follow the above guidelines, then your Partial Page should be fully self-contained. 

However, it will only be self-contained if it is used only once in a page. If you want to use the 

Partial Page more than once, then you will need to make element ids unique. This is where the 

special <%PartialId%> tag can be used. It is given a unique code which can then be applied to 

ids, e.g.: 

<li> 

  <label for="<%PartialId%>_qlc_Term">What is your preferred repayment term?</label> 

</li> 

<li> 

  <input id="<%PartialId%>_qlc_Term" type="range"/> 

</li> 

<li> 

  <div> 

    <label id="<%PartialId%>_qlc_TermMin" class="min"></label> 

    <label id="<%PartialId%>_qlc_TermMax" class="max"></label> 

    <label id="<%PartialId%>_qlc_TermSelected" class="selected"></label> 

  </div> 

</li> 

 

 

<script> 

$(function () { 

  // Controls 

  var C = { 

    rsTerm: null, 

    lblTermMin: null, 

    lblTermMax: null, 

    lblTermSelected: null, 



Page 57 of 74 

  } 

 

  // -------- 

  // Controls 

  // -------- 

  var prefix = "<%PartialId%>"; 

  C.rsTerm = widget.UI.RangeSlider(prefix + "_qlc_Term", { 

    minValue: 2, 

    maxValue: 10, 

    step: 1, 

    width: "100%", 

  }); 

  C.rsTerm.Value(C.rsTerm.MinValue()); 

  C.lblTermMin = $("#" + prefix + "_TermMin"); 

  C.lblTermMax = $("#" + prefix + "_TermMax"); 

  C.lblTermSelected = $("#" + prefix + "_TermSelected"); 

}); 

</script> 

 

NOTE: The use of the <%PartialId%> tag does make the HTML and JavaScript slightly more 

difficult to read but does mean that there should never be any control or element naming 

conflicts on included pages. 

Script Callbacks 
Since a Partial Page has access to both the portal and page JavaScript objects, it can 

communicate with Script Code, e.g., to fetch chart data. 

However, calling the page.GetString method will call back to the main page that is hosting 

the Partial Page which is probably not desirable. 

Using portal.GetString will call back to the Master Page's Script Code, i.e., the Script Code 

page on the Portal form. This may be desirable but means that the Partial Page's Script Code 

and its HTML Code are not self-contained in the Page which is not ideal. 

A special syntax can be used in portal.GetString to ensure that the callback occurs to the 

Partial Page's Script code. The sample below assumes that you have a Partial Page with a code 

of Portfolio and therefore prefixes the eventId parameter with "Portfolio:", e.g.: 

portal.GetString("Portfolio:GetData", {}, 

  function (data) { 

    window.alert(data); 

  }, 

   

  function (error) { 

    window.alert("ERROR: " + error); 

  }); 

 

 

Rather than hard-coding the Page Id, you can use a replaceable tag, e.g.: 

portal.GetString("<%PageId%>:GetData", {}, 

 



Page 58 of 74 

Special Page Codes 
The Custom Login Form section details how to create a custom Login form by using a special 

Page Code of "LOGIN". 

Below is a list of all special Page Codes and a brief description of how they work: 

ERROR_401 

Defines a custom 401, "Unauthenticated " page. 

ERROR_404 

Defines a custom 404, "Page Not Found" page. 

LANDING 

If a Page with this Code exists, is active and "Allows Unauthenticated access" then this will be 

the initial page that the Client/ User sees when navigating to the Portal. 

Typically, this page would show a button to go to the Login form which is achieved by calling 

the portal.SignIn() method. 

LOGIN 

Defines a Custom Login Form. 

PASSWORD_CHANGE 

Defines Custom Password Change page that will be displayed instead of the built-in page when 

the portal.ShowPasswordChange() method is called. 

PORTAL_CONFIG 

Defines a special page which is in fact an HTML Widget definition rather than a true Portal 

page. 

This allows a configuration utility to be defined as per the system-supplied Client Connect 

Portal sample. 

TERMS 

If a Page with this Code exists, is active and "Allows Unauthenticated access" then this will 

provide a link on the Login form. If the Page has as title, this will used as the link text, 

otherwise the caption "Terms & Conditions" will be used. 

Clicking this link calls the portal.ShowTerms() method. 

 



Page 59 of 74 

Resources 
Resources are items, either text or binary files, that can be used by the Portal. 

Each resource must be given a unique code (or Resource Id). 

Special Resources 
The "Code" dropdown contains a list of special Resource Ids that are used by the system. 

These are: 

favicon 

• The Favourite Icon used by Web Browsers. 

• This is an "Image (ICO)" type Resource. 

• NOTE: Even though the Resource Type will be locked at "Image (ICO)", the actual image 

can be any format, e.g., PNG. 

PASSWORD_RESET_EMAIL 

• Used to provide a custom email for Password Request Requests. 

• This is an "HTML" type Resource. 

• The following special tags are available: 

o <%ResetLink%> 

 An HTML anchor tag containing a link to the password reset page. 

o <%ResetUrl%> 

 A URL that can be used to provide a link to the password reset page. 

 

NOTE: Formatting HTML emails so they work across a variety of email clients is outside of the 

scope of this document. 

portalPreview 

• A preview of this Portal to display on the 'Theme' page of the Portals form. 

• This is an "HTML" type Resource. 

• Any constants of theme tags contained in the HTML will be resolved however, there will not 

be a reference to the HTML Widgets JavaScript or CSS files. 

Securing Resources 
The first page of the Portal Resource wizard allows a Resource to be secured, i.e., to NOT allow 

the Resource to be downloaded (unless specifically downloaded via Script Code): 

 



Page 60 of 74 

 
 

The following types of Resource cannot be secured, i.e., they can always be downloaded since 

they are necessary to render Portal Pages: 

• StyleSheet (CSS) 

• StyleSheet (LESS) 

 

The following types of Resource are always secured, i.e., they can NEVER be downloaded: 

• Script Function Library 

 

All Image type Resources are not secured by default but can be if necessary. 

High DPI Resources 
Duplicate resources can be added with a "@2" suffix. When a resource is requested and high 

DPI mode is detected, the "@2" resource will be returned instead. 

For example, say you have a resource with a code of "LOGO" which is your Portal's Logo. This 

is an image that is 320 pixels wide. 

However, high DPI (or Retina) displays benefit from displaying high resolution versions of 

images such as Logos which may appear blurry at lower resolutions such as 320 pixels. 

Therefore, we can create a second resource with a code of "LOGO@2" that is 640 pixels wide. 

When a resource is requested and High DPI mode is detected, a check will be made for a 

resource with a suffix of "@2" and, if one is found, this will be used instead of the requested 

resource. 

NOTE: When using alternate, High DPI image resources, always specify the image size in your 

HTML or CSS so that the image is displayed consistently. 

For example: 

<img style="width:320px" src="<%Resource:Logo%>"/> 

This way, even if the 640 pixel wide image is requested, it will be displayed at the correct size 

since Web browsers use "virtual" pixels. 



Page 61 of 74 

Resource Types 

HTML 

HTML type Resources would generally be used to include a common block of HTML on multiple 

pages. 

It can also be used to include self-contained control-type functionality, e.g., CSS and the 

corresponding JavaScript to implement a Tabs control. 

Images 

The following types of Image resources are supported: 

• GIF 

• JPEG 

• PNG 

• ICO 

 

NOTE: See the High DPI Resources section for details on how to include different image 

resolutions. 

Documents 

Document Type resources would generally be used to allow a static document file to be 

downloaded, e.g., a brochure. 

The following types of Document resources are supported: 

• PDF 

StyleSheet (CSS) 

Allows a Cascading Style Sheet (CSS) to be defined. 

StyleSheet (Less) 

Allows a Cascading Style Sheet (CSS) to be defined but one which can use Less-preprocessing, 

e.g., to nest styles and perform functions such as lightening or darkening theme colours. 

The following site gives more details on Less: 

http://lesscss.org/features/ 

WARNING: The LESS compiler can be quite pick and fail to compile to CSS if there are errors 

such as the use of named system colours or certain formatting mistakes in the source. 

JavaScript 

Allows a JavaScript file to be defined. 

Script Function Library 

These Resources will be included when compiling the Portal's Script, and also, each of the 

Portal Page Scripts. 

This is the same concept as "Function Library" type Scripts (which can still be used via the 

#include directive) but there they do not need to be explicitly referenced in the Scripts. 

http://lesscss.org/features/


Page 62 of 74 

Text 

Allows a plain Text file to be defined. 

 

 

 

 



Page 63 of 74 

State Data 
Portals act like Web applications, even when hosted within finPOWER Connect. 

They therefore support the concept of Application and Session state. 

A special "User Data" state is also supported so that data can be saved between User's 

sessions, e.g., you may give the user the ability to choose their own background colour for the 

site. 

Each of the Application, Session and UserData properties of the Portal Handler are Key 

Value Lists (ISKeyValueList objects). 

Application 
This is used to save and retrieve information for the entire Portal, e.g., a counter that is 

incremented every time a user requests a certain page. 

Since Application state is shared between all Portal users, it must be locked before making any 

changes to it and then unlocked to commit those changes, e.g.: 

' Increment Fetch Count 

mPortalHandler.ApplicationLock() 

With mPortalHandler.Application 

  .SetInteger("Count", .GetInteger("Count") + 1) 

End With 

mPortalHandler.ApplicationUnlock() 

IMPORTANT: Application state should be locked for as brief a period as possible since it will 

block other requests to the Portal that need to access the Application object. 

Application state can be viewed (and cleared) on the "State" page of the Portals form, e.g.: 

 

  



Page 64 of 74 

Session 
Session state is used to store information for a current user session (either a finPOWER 

Connect User, a Client or an Anonymous user). 

When the Session expires or the user signs out, their session data will be lost. 

By default, Session Timeout for a Portal is set to 15 minutes. This means that if no requests 

have been made for 15 minutes (e.g., moving between Portal Pages) then the Session will be 

expired and, if a Client or User is signed in, they will receive the following message: 

 
 

NOTE: Unlike Application state, Session state does not need to be locked and unlocked and is 

saved automatically. 

 

Session state can be viewed (and deleted) on the "State" page of the Portals form, e.g.: 

 
 

Drilling down on a Session record allows its data to be viewed. 

 

IMPORTANT: Deleting a User or Client's Session record will NOT cause the User or Client to 

be signed out; it will simply remove any Session data they have recorded. 

  



Page 65 of 74 

User Data 
User Data is used to store information for a current user (either a finPOWER Connect User or a 

Client). 

NOTE: Unlike Application state, User Data state does not need to be locked and unlocked and 

is saved automatically. 

 

User Data state can be viewed (and deleted) on the "State" page of the Portals form, e.g.: 

 

 

Drilling down on a User Data record allows its data to be viewed. 

 

NOTE: Unlike Session state which stores information only for the User or Client's current 

session, User Data is stored indefinitely. 

 



Page 66 of 74 

JavaScript objects 
The following special JavaScript objects are available to Portals: 

• page 

o This represents the current page and is a shortcut to a slightly modified widget object 

(the widget object can still be used in most circumstances, e.g., when copying and 

pasting code between HTML Widgets and Portals. 

• portal 

o The represents the Portal. 

page 
As mentioned above, this is a shortcut to the widget object but has the following additional 

properties and methods that are Portal-specific: 

Member Description 

widget.PageId The Id of the currently loaded Page. 

widget.UI.Modal.LoadPortalPage Load a Portal Page into a Modal form. 

 
NOTE: Used by portal.OpenPageInModal which is the 
preferred way to achieve this. 

widget.UI.Forms.ShowHtmlWidgetModal Show an HTML Widget in a Modal form. 

NOTE: See the Using HTML Widgets in Portals section 
for more information. 

portal 
All interaction with the Portal is performed via this object. 

Member Description 

AllowPasswordResetLink Indicates whether this Portal is configured to allow a 

Password Reset Link to be emailed to a Client or User. 

AuthenticateClient Authenticate a Client and sign in. 

NOTE: Used by the Login page for Client-based Portals. 

AuthenticateUser Authenticate a User and sign in. 

NOTE: Used by the Login page for User-based Portals. 

ChangePassword Change the password for a signed-in User or Client. 

DownloadFile Download a File via a call to the Portal's (rather than the 

current Page's) Script. 
 

NOTE: Consider using DocumentManagerFile Application 
Shortcuts for a non-coding solution to download existing files 

in the Document Manager. 

GetPlatformCompatibilityWarning Get a warning message relating to platform 

compatibility, e.g., to display on the Sign-In form. 

GetResourceUrl Get a URL to a Resource such as an image or a CSS file. 

GetString Get a String via a call to the Portal's (rather than the 

current Page's) Script. 

HidePwaPrompt Hide the PWA prompt if it is showing. 

InsertWidget Insert an HTML Widget. 



Page 67 of 74 

IsInModal Returns true if this Portal Page is being shown in a 

Modal form. 

PortalId The Portal Id. 

Navigate Navigate to a different Portal page. 

OpenPageInModal Open a different Portal page in a Modal form. 

OpenPortal Open a different Portal. 

ParentModalClose Closes the parent Modal if this Portal Page is hosted in a 

Modal. 

NOTE: Does nothing if page is not in a Modal. 

PasswordResetFromToken Reset a Client or User Password from the supplied 

token. 

PwaEnabled Indicates whether this Portal has PWA (Progressive Web 

Application) functionality enabled. 

PwaName The PWA application name. 

SendPasswordResetLink Send a Password Reset link to a Client or User. 

SignIn Go to the Login page. 

NOTE: Will go to the system-based @LOGIN page unless a 
custom page named "LOGIN" exists. 

SignOut Sign Out of the Portal and return to the Login page. 

ShowPasswordChange Shows the Password Change page, optionally, in a Modal 

form. 

NOTE: Will go to the system-based @PASSWORD_CHANGE 
page unless a custom page named "PASSWORD_CHANGE" 
exists. 

ShowPwaPrompt Show PWA prompt providing existing Web browser 

supports PWAs and this Portal is not already running as 

a PWA. 

Version The current Portals version. 

 



Page 68 of 74 

Launching a Portal 

From within finPOWER Connect 
Portals can be run from within finPOWER Connect via Application Shortcuts, e.g.: 

app://Portal?id=MYPORTAL 

From Web Services Administration 
The "Portals" view of the Web Services Administration facility allows Portals to be opened: 

 

In a Web Browser 

Via Web Services 

Web Services handle a special "Portal" folder from which all Portals are accessed. 

Accessing a Portal is as simple as specifying the Portal Id in the URL, e.g.: 

https://web-services-url/Portal/MYPORTAL 

Via Web Services in an IFRAME 

Directing users to a Web Services URL may look a little odd, e.g., if the Portal is hosted within 

a public company Website. 

Hosting the Portal in an IFRAME via a simple HTML page on the company Website makes the 

Portal appear to be part of that Website. 

Below is the complete HTML for a page that does the following: 

• Hosts the Portal in an IFRAME. 

• Uses the URL hash to display the current Portal page. 

o The allows users to bookmark pages within the Portal. 

 



Page 69 of 74 

<!DOCTYPE html> 

<html> 

<head> 

  <title>Hosted Portal Sample</title> 

</head> 

<body> 

 

  <iframe id="portal" 

          src="http://localhost:51149/Ws3/Portal/CCP/" 

          style="position:absolute; left:0; top:0; right:0; bottom:0; 

                 width:100%; height:100%; box-sizing:border-box;"> 

  </iframe> 

 

  <script> 

    // Initialise 

    var iframe = document.getElementById("portal"); 

    var inHashChange = false; 

 

    // Trap changes to iframe URL and propogate to this document's URL Hash 

    window.addEventListener("message", function (event) { 

      if (event.data && event.data.message) { 

        switch (event.data.message) { 

          case "portal-url-changed": 

            inHashChange = true; 

            window.location.hash = event.data.url; 

            window.setTimeout(function () { inHashChange = false; }, 10); 

      break; 

 

           case "portal-loaded": 

             // Navigate now? 

             if (window.location.hash && window.location.hash != "#") { 

               PortalHavigateHash(); 

             } 

             break; 

           } 

   } 

 }, false); 

 

    // Trap changes to this document's URL Hash and navigate Portal 

    window.onhashchange = function () { 

      if (inHashChange) return; 

        PortalHavigateHash(); 

      }; 

 

    // Navigate the Portal based on the URL Hash 

    function PortalHavigateHash() { 

      var hash = window.location.hash; 

      if (hash && hash.startsWith("#")) hash = hash.substr(1); 

      iframe.contentWindow.postMessage({ message: "portal-navigate", url: hash }, "*"); 

    } 

  </script> 

 

</body> 

</html> 

 

NOTE: See the WebServices/Samples/PortalIframe/PortalHost.htm file for a sample page. 

WARNING: Browser security prevents this working if the HTML page containing the IFRAME is 

loaded from the local file system, i.e., via the "file://" protocol. 



Page 70 of 74 

Portal Hosting 
Portals can be accessed in the following three ways: 

1. Directly 

2. Directly but in an IFRAME 

3. Using the Portal Host Web Application 

These options are described in the following sections. 

NOTE: The recommended access method is using the Portal Host Web Application. 

Directly 
Directly via a URL to Web Services, e.g.: 

https://demo.intersoft.co.nz/finPOWERConnectWS3/Portal/CC 

This is the simplest method since, if your Web Services are exposed publicly, you can simply 

provide a URL directly to the Portal with no additional work. 

This method is great for testing a Portal however it has the following drawbacks: 

• You have no control over the URL: 

o i.e., the URL always points to Web Services when you might want to provide Clients with 

a friendlier URL such as http://clientconnect.mycompanywebsite.com 

• Web Services must be externally visible to the Internet. 

o This means that anyone can access your Web Services. 

 Although Web Services do require authenticated access, this is not ideal and finPOWER 

Connect Cloud using a proxying mechanism so that Web Services can exist on a 

different server and potentially behind a firewall. 

WARNING: This method is not recommended since it requires Users or Clients having a direct 

URL to Web Services and therefore Web Services being publicly available over the internet. 

Directly but in an IFRAME 
This method still accesses the Portal directly via Web Services however it disguises this fact 

from the user by using an HTML IFRAME to make it look as if the Portal is hosted on your own 

website. 

See the Via Web Services in an IFRAME section for more information. 

WARNING: This method is not recommended since it requires Users or Clients having a direct 

URL to Web Services and therefore Web Services being publicly available over the internet. 

Using the Portal Host Web Application 
Intersoft Systems supply a Portal Host Web Application. 

This is installed just like finPOWER Connect Cloud and provides a simple proxying mechanism 

which allows the Portal to be hosted on your own Website but to access Web Services in a 

similar manner to finPOWER Connect Cloud. 

Once installed, this Application must be configured by directly editing the App_Data/config.xml 

file to specify the URL of your Web Services and the ID of the Portal to host, e.g.: 

 

<ISKeyValueList version="1.00"> 

  <Item type="String" key="PortalId">CC</Item> 

  <Item type="String" key="WebServicesUrl">http://localhost:51149/Ws3/</Item> 

https://demo.intersoft.co.nz/finPOWERConnectWS3/Portal/CC
http://clientconnect.mycompanywebsite.com/


Page 71 of 74 

</ISKeyValueList> 

 

WARNING: Always take a backup copy of your config.xml file before installing a new version 

of the Portal Host. 



Page 72 of 74 

Testing a Portal 
There are three different modes a Portal can be accessed from and all should be tested (unless 

the Portal is only going to be used from a Web Browser via Web Services): 

1. From within finPOWER Connect 

a. e.g., via the "Test" button on the Test page of the Portals form. 

 

2. Testing in an External Browser launched from within finPOWER Connect 

a. Via the "Test in Web Browser (Experimental)" button on the Test page of the Portals 

form. 

b. NOTE: This mode is primarily designed for trouble-shooting JavaScript and HTML 

issues and may behave slightly differently in certain situations; Users will never 

access the Portal via this method. 

 

3. From Web Services 

a. i.e., as a fully-fledged Website. 

 

You should also ensure that, if the Portal is to be hosted in a Web Browser, that you test: 

1. All target browsers, e.g.: 

a. Chrome 

b. Internet Explorer 

c. Microsoft Edge 

d. Firefox 

e. Safari 

2. On mobile devices such as: 

a. iPads 

b. iPhones 

c. Android Phones and Tablets 



Page 73 of 74 

Performance and Best Practices 
Every call to retrieve a Page or a Resource such as an image requires Web Services and 

therefore involves overhead that can be minimised or avoided completely. 

Inlining Resources vs Retrieving via a URL 
Inlining Resources (e.g., expanding a stylesheet so it is included as part of the HTML page) 

avoids making additional Web Services calls. However, this makes the page size larger in the 

initialise request, e.g.: 

<link rel="stylesheet" type="text/css" href="<%ResourceDataUri:CSS%>"/> 

NOTE: In the above example, the content of the CSS resource is encoded into a Data URI and 

therefore becomes part of the page. 

Retrieving a Resource via a URL means that the overall page size is smaller but an additional 

Web Service call is made t, e.g.: 

<link rel="stylesheet" type="text/css" href="<%ResourceUrl:CSS%>"/> 

 

Using the ResourceDataUri tag rather than the ResourceUrl tag means that there is less load 

put on the Web Server. This can be useful for optimising performance but may impact a user's 

page load times. However, you should bear in mind that most Resources should be cached by 

the user's web browser rather than being fetched with every page request. 

Embedded vs External Resources 
Resources such as images can be embedded within the Portal, e.g., from the Resources page 

or by creating a Data URI for a Logo on the Theme page, e.g.: 

 

 

 

If an image or resource is available at an external location then referencing this instead of 

embedding the image means that no Web Services call is made and also that no large data 

URI is embedded in the page. 

 

 



Page 74 of 74 

Using HTML Widgets in Portals 
There are occasions where you may want to use an HTML Widget within a Portal. 

For example, you may have an HTML Widget to perform a Loan Quote that you want finPOWER 

Connect Users to access (via finPOWER Connect Cloud) but also want Clients to be able to 

access (e.g., from a Client Portal). 

Identifying the Portal 
The HTML Widget Script code can use the following to determine the Id of the Portal that it has 

been called from: 

mPortalId = requestInfo.HostedInPortalId 

Identifying the Signed-In Client 
For Client-based Portals, checking the Current User, e.g., via finBLCurrentUser.UserId is 

meaningless. 

The HTML Widget Script code can use the following to determine the Id of the Portal's signed-

in Client and act accordingly: 

mClientId = requestInfo.AuthenticatedClientId 

 

NOTE: When running a Client-based Portal from within finPOWER Connect, 

requestInfo.AuthenticatedClientId will always be a blank String. 

 

An HTML Widget could vary its behaviour if it detects a Client is signed in, e.g.: 

• Hiding data-capture pages from an Account Application since the Client is already known. 

• Hiding information that a Client should never be able to select, e.g., a Dealer or 

Disbursement details. 

Using Portal Styling 
When an HTML Widget is displayed in a Client Portal, you may wish for it to be styled 

differently to how a finPOWER Connect Cloud User would see it. 

Currently, there is no automatic way to do this. However, if you have a CSS (or LESS) 

resource in you Portal that you wish to include in you HTML Widget, you can access the 

resource as shown below: 

PortalCss = finBL.HtmlWidgetUtilities.GetPortalResourceCss(mPortalId, "MyCSS") 

 


	finPOWER Connect 3 Portals
	Table of Contents
	Disclaimer
	Version History
	Introduction
	External Hosting Considerations
	Resources
	Cookies

	Overview
	Portals Form
	General
	Security
	Client-Specific
	User-Specific

	Multi-Factor
	PWA
	Options
	Theme
	HTML Widgets
	Master Page
	Script Code
	Pages
	Resources
	Constants
	State
	Test
	Publish
	IDE
	History
	Manually Adding History Entries
	Purging History Entries



	Authentication and Security
	Authentication Method
	User
	Client
	Unauthenticated

	Session Timeout and Secret Key
	Session Timeout minutes
	Secret Key

	Additional Authentication Checks
	Portal
	Page

	Custom Login Form
	Simple Style Changes
	Custom Page

	Custom Error Pages
	401 (Unauthorised)
	404 (Not Found)


	Navigation and Hyperlinks
	portal.Navigate
	portal.Navigate2
	portal.Open
	Anchor Tags "href" Attribute
	portal.OpenPageInModal
	portal.ShowPasswordChange

	Master Page
	Content blocks
	Literals
	Constants
	User Data
	SiteMap
	Resources
	Replaceable [THEME] Tag

	Resource Bundles
	Tags
	Overriding Tags

	Theme
	Widget
	Styling
	Security


	Portal Pages
	Content blocks
	Site Map

	Partial Pages
	Partial Page Guidelines
	HTML Elements
	JavaScript
	Inline CSS and LESS
	Constants

	Multi-Use Partial Pages and Avoiding Element ID Conflicts
	Script Callbacks

	Special Page Codes
	ERROR_401
	ERROR_404
	LANDING
	LOGIN
	PASSWORD_CHANGE
	PORTAL_CONFIG
	TERMS

	Resources
	Special Resources
	favicon
	PASSWORD_RESET_EMAIL
	portalPreview

	Securing Resources
	High DPI Resources
	Resource Types
	HTML
	Images
	Documents
	StyleSheet (CSS)
	StyleSheet (Less)
	JavaScript
	Script Function Library
	Text


	State Data
	Application
	Session
	User Data

	JavaScript objects
	page
	portal

	Launching a Portal
	From within finPOWER Connect
	From Web Services Administration
	In a Web Browser
	Via Web Services
	Via Web Services in an IFRAME


	Portal Hosting
	Directly
	Directly but in an IFRAME
	Using the Portal Host Web Application

	Testing a Portal
	Performance and Best Practices
	Inlining Resources vs Retrieving via a URL
	Embedded vs External Resources

	Using HTML Widgets in Portals
	Identifying the Portal
	Identifying the Signed-In Client
	Using Portal Styling



